Lesson 4 Gravitational and Potential Energy
What is Mechanical Energy?
An object that has mechanical energy is able to do work.
The total amount of mechanical energy is the sum of the gravitational potential energy and the kinetic energy.

The law of conservation of energy states that the total amount of energy in any given situation remains constant. In a system, an object’s gravitational potential energy can be converted to kinetic energy and vice versa. The assumption is made that energy will be transferred from one form to another with no energy lost. That is why in any system, the amount of gravitational potential energy is equal to the amount of kinetic energy.
For an object falling a distance"h" from rest:
Examples
- A 150 g ball has 12.2 J of gravitational potential energy as it is held 6.8 m above the ground. Determine the amount of kinetic energy the ball has just as it is about to hit the ground after being dropped.
-
A 14.3 kg chunk of ice falls from a roof that is 8.5 m above the ground. Calculate the ice chunk’s kinetic energy as it reaches the ground.
As the ice chunk falls, the gravitational potential energy gets converted into kinetic energy.
Determine the Ep of the ice chunk.
Step 1: List the variables
m = 14.3 kg
h = 8.5 m
g = 9.81 «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»m«/mi»«mo»/«/mo»«msup»«mi»s«/mi»«mn»2«/mn»«/msup»«/math» (this one is easy to forget because it is not listed in the questions. Find it in the Data Booklet.
«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msub»«mi»E«/mi»«mi»p«/mi»«/msub»«mo»§#160;«/mo»«mo»=«/mo»«mo»§#160;«/mo»«mo»?«/mo»«/math»
Step 2: Identify the correct formulas and rearrange if necessary.
«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msub»«mi»E«/mi»«mi»m«/mi»«/msub»«mo»§#160;«/mo»«mo»=«/mo»«mo»§#160;«/mo»«msub»«mi»E«/mi»«mi»k«/mi»«/msub»«mo»§#160;«/mo»«mo»+«/mo»«mo»§#160;«/mo»«msub»«mi»E«/mi»«mi»p«/mi»«/msub»«/math»
«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msub»«mi»E«/mi»«mi»m«/mi»«/msub»«mo»§#160;«/mo»«mo»=«/mo»«mo»§#160;«/mo»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«mi»m«/mi»«msup»«mi»v«/mi»«mn»2«/mn»«/msup»«mo»§#160;«/mo»«mo»§#160;«/mo»«mo»+«/mo»«mo»§#160;«/mo»«mi»m«/mi»«mi»g«/mi»«mi»h«/mi»«/math»
Step 3: Substitute into the formula
There are two ways to consider this problem.
Method 1: The strength of this method is simplicity. It works in this situation where energy is 100% converted.
Recognise that the potential energy of the ice on the roof is 100 % converted to kinetic energy just before the ice hits the ground.
«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mo»§#160;«/mo»«mo»§#160;«/mo»«mo»§#160;«/mo»«mo»§#160;«/mo»«msub»«mi»E«/mi»«mi»p«/mi»«/msub»«mo»§#160;«/mo»«mo»=«/mo»«mo»§#160;«/mo»«msub»«mi»E«/mi»«mi»k«/mi»«/msub»«mspace linebreak=¨newline¨»«/mspace»«mi»m«/mi»«mi»g«/mi»«mi»h«/mi»«mo»§#160;«/mo»«mo»§#160;«/mo»«mo»=«/mo»«mo»§#160;«/mo»«msub»«mi»E«/mi»«mi»k«/mi»«/msub»«mspace linebreak=¨newline¨»«/mspace»«mn»14«/mn»«mo».«/mo»«mn»3«/mn»«mo»§#160;«/mo»«mi»k«/mi»«mi»g«/mi»«mo»§#160;«/mo»«mi»x«/mi»«mo»§#160;«/mo»«mn»9«/mn»«mo».«/mo»«mn»81«/mn»«mo»§#160;«/mo»«mi»m«/mi»«mo»/«/mo»«msup»«mi»s«/mi»«mn»2«/mn»«/msup»«mo»§#160;«/mo»«mi»x«/mi»«mo»§#160;«/mo»«mn»8«/mn»«mo».«/mo»«mn»5«/mn»«mo»§#160;«/mo»«mi»m«/mi»«mo»§#160;«/mo»«mo»§#160;«/mo»«mo»=«/mo»«mo»§#160;«/mo»«msub»«mi»E«/mi»«mi»k«/mi»«/msub»«/math»
Method 2: Mechanical energy is conserved, so consider the mechanical energy at two time. This is not really different. The advantage is it can be applied in more complicated situations.
Mechanical energy is conserved, so think about mechanical energy before and after.
Before
«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msub»«mi»E«/mi»«mi»m«/mi»«/msub»«mo»§#160;«/mo»«mo»=«/mo»«mo»§#160;«/mo»«mn»0«/mn»«mo»§#160;«/mo»«mo»+«/mo»«mo»§#160;«/mo»«mn»14«/mn»«mo».«/mo»«mn»3«/mn»«mo»§#160;«/mo»«mi»k«/mi»«mi»g«/mi»«mo»§#160;«/mo»«mi»x«/mi»«mo»§#160;«/mo»«mn»9«/mn»«mo».«/mo»«mn»81«/mn»«mo»§#160;«/mo»«mi»m«/mi»«mo»/«/mo»«msup»«mi»s«/mi»«mn»2«/mn»«/msup»«mo»§#160;«/mo»«mi»x«/mi»«mo»§#160;«/mo»«mn»8«/mn»«mo».«/mo»«mn»5«/mn»«mo»§#160;«/mo»«mi»m«/mi»«mspace linebreak=¨newline¨»«/mspace»«msub»«mi»E«/mi»«mi»m«/mi»«/msub»«mo»§#160;«/mo»«mo»=«/mo»«mo»§#160;«/mo»«mn»1192«/mn»«mo».«/mo»«mn»4«/mn»«mo»§#160;«/mo»«mi»J«/mi»«/math»After
«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msub»«mi»E«/mi»«mi»m«/mi»«/msub»«mo»§#160;«/mo»«mo»=«/mo»«mo»§#160;«/mo»«msub»«mi»E«/mi»«mi»k«/mi»«/msub»«mo»§#160;«/mo»«mo»+«/mo»«mo»§#160;«/mo»«mn»0«/mn»«mo»§#160;«/mo»«mspace linebreak=¨newline¨»«/mspace»«mn»1192«/mn»«mo».«/mo»«mn»4«/mn»«mo»§#160;«/mo»«mi»J«/mi»«mo»§#160;«/mo»«mo»§#160;«/mo»«mo»=«/mo»«mo»§#160;«/mo»«msub»«mi»E«/mi»«mi»k«/mi»«/msub»«/math»
Step 4: Calculate the answer
«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msub»«mi»E«/mi»«mi»k«/mi»«/msub»«mo»§#160;«/mo»«mo»=«/mo»«mo»§#160;«/mo»«mn»1192«/mn»«mo».«/mo»«mn»4«/mn»«mo»§#160;«/mo»«mi»J«/mi»«/math» .
The smallest number of significant digits in the question is 2 (8.5 m), so your answer must be expressed with two significant digits. To do this you need to use scientific notation
«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msub»«mi»E«/mi»«mi»k«/mi»«/msub»«mo»§#160;«/mo»«mo»=«/mo»«mo»§#160;«/mo»«mn»1«/mn»«mo».«/mo»«mn»2«/mn»«mo»§#160;«/mo»«mi»x«/mi»«mo»§#160;«/mo»«msup»«mn»10«/mn»«mn»3«/mn»«/msup»«mo»§#160;«/mo»«mi»J«/mi»«/math»
-
A girl with a mass of 55 kg stands at the top of a 10.0 m platform diving tower at the local swimming pool. She steps off and falls to the water below. Calculate the girl’s speed as she contacts the water.
As the girl falls, the gravitational potential energy gets converted into kinetic energy. Ep = Ek due to the conservation of energy.
Step 1: List the variables
m = 55 kg
h = 10.0 m
g = 9.81 «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»m«/mi»«mo»/«/mo»«msup»«mi»s«/mi»«mn»2«/mn»«/msup»«/math»
Step 2: Identify the correct formula
This questions involved and change in mechanical energy, so the the appropriate formula is:
«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msub»«mi»E«/mi»«mi»m«/mi»«/msub»«mo»§#160;«/mo»«mo»=«/mo»«mo»§#160;«/mo»«msub»«mi»E«/mi»«mi»k«/mi»«/msub»«mo»§#160;«/mo»«mo»+«/mo»«mo»§#160;«/mo»«msub»«mi»E«/mi»«mi»p«/mi»«/msub»«/math»
Step 3: Substitute values into the formula.
There are two ways to think about this problem. the first method is simple and works when energy is 100% converted. the second method works in every situation.
Method 1: Recognizing the potential energy is 100% converted to Kinetic energy
null
«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mn»§#160;§#160;§#160;§#160;§#160;§#160;§#160;§#160;§#160;§#160;§#160;§#160;§#160;§#160;§#160;§#160;§#160;§#160;§#160;§#160;§#160;§#160;§#160;§#160;§#160;§#160;§#160;§#160;§#160;§#160;§#160;§#160;§#160;§#160;§#160;§#160;§#160;§#160;§#160;§#160;§#160;§#160; 55«/mn»«mo»§#160;«/mo»«mi»k«/mi»«mi»g«/mi»«mo»§#160;«/mo»«mi»x«/mi»«mo»§#160;«/mo»«mn»9«/mn»«mo».«/mo»«mn»81«/mn»«mo»§#160;«/mo»«mi»m«/mi»«mo»/«/mo»«msup»«mi»s«/mi»«mn»2«/mn»«/msup»«mo»§#160;«/mo»«mi»x«/mi»«mo»§#160;«/mo»«mn»10«/mn»«mo».«/mo»«mn»0«/mn»«mo»§#160;«/mo»«mi»m«/mi»«mo»§#160;«/mo»«mo»=«/mo»«mo»§#160;«/mo»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«mo»§#160;«/mo»«mi»x«/mi»«mo»§#160;«/mo»«mn»55«/mn»«mo»§#160;«/mo»«mi»k«/mi»«mi»g«/mi»«mo»§#160;«/mo»«mi»x«/mi»«mo»§#160;«/mo»«msup»«mi»v«/mi»«mn»2«/mn»«/msup»«mspace linebreak=¨newline¨»«/mspace»«/math»
Method 2: Mechanical energy is conserved. consider the mechanical energy at two times
Before «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msub»«mi»E«/mi»«mi»m«/mi»«/msub»«mo»§#160;«/mo»«mo»=«/mo»«mo»§#160;«/mo»«msub»«mi»E«/mi»«mi»k«/mi»«/msub»«mo»§#160;«/mo»«mo»§#160;«/mo»«mo»+«/mo»«mo»§#160;«/mo»«mo»§#160;«/mo»«msub»«mi»E«/mi»«mi»p«/mi»«/msub»«mspace linebreak=¨newline¨»«/mspace»«mo»§#160;«/mo»«msub»«mi»E«/mi»«mi»m«/mi»«/msub»«mo»§#160;«/mo»«mo»=«/mo»«mo»§#160;«/mo»«mn»0«/mn»«mo»§#160;«/mo»«mo»§#160;«/mo»«mo»+«/mo»«mo»§#160;«/mo»«mi»m«/mi»«mi»g«/mi»«mi»h«/mi»«mspace linebreak=¨newline¨»«/mspace»«msub»«mi»E«/mi»«mi»m«/mi»«/msub»«mo»§#160;«/mo»«mo»§#160;«/mo»«mo»=«/mo»«mo»§#160;«/mo»«mn»55«/mn»«mo»§#160;«/mo»«mi»k«/mi»«mi»g«/mi»«mo»§#160;«/mo»«mi»x«/mi»«mo»§#160;«/mo»«mn»9«/mn»«mo».«/mo»«mn»81«/mn»«mo»§#160;«/mo»«mi»m«/mi»«mo»/«/mo»«msup»«mi»s«/mi»«mn»2«/mn»«/msup»«mo»§#160;«/mo»«mi»x«/mi»«mo»§#160;«/mo»«mn»10«/mn»«mo».«/mo»«mn»0«/mn»«mo»§#160;«/mo»«mi»m«/mi»«mspace linebreak=¨newline¨»«/mspace»«msub»«mi»E«/mi»«mi»m«/mi»«/msub»«mo»§#160;«/mo»«mo»§#160;«/mo»«mo»=«/mo»«mo»§#160;«/mo»«mn»5395«/mn»«mo».«/mo»«mn»5«/mn»«mo»§#160;«/mo»«mi»J«/mi»«/math» |
After «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msub»«mi»E«/mi»«mi»m«/mi»«/msub»«mo»§#160;«/mo»«mo»=«/mo»«mo»§#160;«/mo»«msub»«mi»E«/mi»«mi»k«/mi»«/msub»«mo»§#160;«/mo»«mo»§#160;«/mo»«mo»+«/mo»«mo»§#160;«/mo»«msub»«mi»E«/mi»«mi»p«/mi»«/msub»«mspace linebreak=¨newline¨»«/mspace»«msub»«mi»E«/mi»«mi»m«/mi»«/msub»«mo»§#160;«/mo»«mo»§#160;«/mo»«mo»=«/mo»«mo»§#160;«/mo»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«mi»m«/mi»«msup»«mi»v«/mi»«mn»2«/mn»«/msup»«mo»§#160;«/mo»«mo»§#160;«/mo»«mo»+«/mo»«mo»§#160;«/mo»«mn»0«/mn»«mspace linebreak=¨newline¨»«/mspace»«mn»5395«/mn»«mo».«/mo»«mn»5«/mn»«mo»§#160;«/mo»«mi»J«/mi»«mo»§#160;«/mo»«mo»=«/mo»«mo»§#160;«/mo»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«mi»x«/mi»«mo»§#160;«/mo»«mn»55«/mn»«mo»§#160;«/mo»«mi»k«/mi»«mi»g«/mi»«mo»§#160;«/mo»«mi»x«/mi»«mo»§#160;«/mo»«msup»«mi»v«/mi»«mn»2«/mn»«/msup»«/math» |
Step 4: Calculate the answer.
«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mn»5395«/mn»«mo».«/mo»«mn»5«/mn»«mo»§#160;«/mo»«mi»J«/mi»«mo»§#160;«/mo»«mo»=«/mo»«mo»§#160;«/mo»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«mo»§#160;«/mo»«mi»x«/mi»«mo»§#160;«/mo»«mn»55«/mn»«mo»§#160;«/mo»«mi»k«/mi»«mi»g«/mi»«mo»§#160;«/mo»«mi»x«/mi»«mo»§#160;«/mo»«msup»«mi»v«/mi»«mn»2«/mn»«/msup»«mspace linebreak=¨newline¨»«/mspace»«mfrac»«mrow»«mn»5395«/mn»«mo».«/mo»«mn»5«/mn»«mo»§#160;«/mo»«mi»J«/mi»«/mrow»«mrow»«mn»27«/mn»«mo».«/mo»«mn»5«/mn»«mo»§#160;«/mo»«mi»k«/mi»«mi»g«/mi»«/mrow»«/mfrac»«mo»§#160;«/mo»«mo»=«/mo»«mo»§#160;«/mo»«msup»«mi»v«/mi»«mn»2«/mn»«/msup»«mspace linebreak=¨newline¨»«/mspace»«mn»196«/mn»«mo».«/mo»«mn»2«/mn»«mo»§#160;«/mo»«msup»«mi»m«/mi»«mn»2«/mn»«/msup»«mo»§#160;«/mo»«mo»/«/mo»«mo»§#160;«/mo»«msup»«mi»s«/mi»«mn»2«/mn»«/msup»«mo»§#160;«/mo»«mo»=«/mo»«mo»§#160;«/mo»«msup»«mi»v«/mi»«mn»2«/mn»«/msup»«mspace linebreak=¨newline¨»«/mspace»«msqrt»«mn»196«/mn»«mo».«/mo»«mn»2«/mn»«msup»«mi»m«/mi»«mn»2«/mn»«/msup»«mo»/«/mo»«msup»«mi»s«/mi»«mn»2«/mn»«/msup»«mo»§#160;«/mo»«/msqrt»«mo»§#160;«/mo»«mo»§#160;«/mo»«mo»=«/mo»«mo»§#160;«/mo»«mo»§#160;«/mo»«msqrt»«msup»«mi»v«/mi»«mn»2«/mn»«/msup»«/msqrt»«mspace linebreak=¨newline¨»«/mspace»«mo»§#160;«/mo»«mo»§#160;«/mo»«mn»14«/mn»«mo».«/mo»«mn»0071«/mn»«mo»§#160;«/mo»«mi»m«/mi»«mo»/«/mo»«mi»s«/mi»«mo»§#160;«/mo»«mo»=«/mo»«mo»§#160;«/mo»«mi»v«/mi»«/math»
Expressed with two significant digits because 55 kg has only two, the answer becomes 14 m/s.
v = 14 m/s
Step 1: List the variables.
d = 2.5 m F = 1300 N m = 3.5 kg h = ?
Step 2: Choose the correct formula.
In this situation work is done on the cannonball to give it kinetic energy, which then is changed to potential energy.
W = Fd «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msub»«mi»E«/mi»«mi»p«/mi»«/msub»«mo»§#160;«/mo»«mo»=«/mo»«mo»§#160;«/mo»«mi»m«/mi»«mi»g«/mi»«mi»h«/mi»«/math»
Step 3: Substitute and calculate. This is a two step problem.
«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»W«/mi»«mo»§#160;«/mo»«mo»§#160;«/mo»«mo»=«/mo»«mo»§#160;«/mo»«mi»f«/mi»«mo»§#160;«/mo»«mi»x«/mi»«mo»§#160;«/mo»«mi»d«/mi»«mspace linebreak=¨newline¨»«/mspace»«mi»W«/mi»«mo»§#160;«/mo»«mo»=«/mo»«mo»§#160;«/mo»«mn»1300«/mn»«mo»§#160;«/mo»«mi»N«/mi»«mo»§#160;«/mo»«mi»x«/mi»«mo»§#160;«/mo»«mn»2«/mn»«mo».«/mo»«mn»5«/mn»«mo»§#160;«/mo»«mi»m«/mi»«mspace linebreak=¨newline¨»«/mspace»«mi»W«/mi»«mo»§#160;«/mo»«mo»=«/mo»«mo»§#160;«/mo»«mn»3261«/mn»«mo».«/mo»«mn»825«/mn»«mo»§#160;«/mo»«mi»J«/mi»«mspace linebreak=¨newline¨»«/mspace»«/math»
«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi»W«/mi»«mo»§#160;«/mo»«mo»=«/mo»«mo»§#160;«/mo»«msub»«mi»E«/mi»«mi»p«/mi»«/msub»«mspace linebreak=¨newline¨»«/mspace»«mn»3261«/mn»«mo».«/mo»«mn»825«/mn»«mo»§#160;«/mo»«mi»J«/mi»«mo»§#160;«/mo»«mo»=«/mo»«mo»§#160;«/mo»«mn»3«/mn»«mo».«/mo»«mn»5«/mn»«mo»§#160;«/mo»«mi»k«/mi»«mi»g«/mi»«mo»§#160;«/mo»«mi»x«/mi»«mo»§#160;«/mo»«mn»9«/mn»«mo».«/mo»«mn»81«/mn»«mo»§#160;«/mo»«mi»m«/mi»«mo»/«/mo»«msup»«mi»s«/mi»«mn»2«/mn»«/msup»«mo»§#160;«/mo»«mi»x«/mi»«mo»§#160;«/mo»«mi»h«/mi»«mspace linebreak=¨newline¨»«/mspace»«mfrac»«mrow»«mn»3261«/mn»«mo».«/mo»«mn»825«/mn»«mo»§#160;«/mo»«mi»J«/mi»«/mrow»«mrow»«mn»34«/mn»«mo».«/mo»«mn»335«/mn»«mo»§#160;«/mo»«mi»k«/mi»«mi»g«/mi»«mo»§#160;«/mo»«mo»§#160;«/mo»«mi»m«/mi»«mo»/«/mo»«msup»«mi»s«/mi»«mn»2«/mn»«/msup»«/mrow»«/mfrac»«mo»§#160;«/mo»«mo»§#160;«/mo»«mo»=«/mo»«mo»§#160;«/mo»«mi»h«/mi»«mspace linebreak=¨newline¨»«/mspace»«mn»95«/mn»«mo»§#160;«/mo»«mi»m«/mi»«mo»§#160;«/mo»«mo»=«/mo»«mo»§#160;«/mo»«mi»h«/mi»«/math»
Step 4: Express your answer.
The least number of significant digits in the question is two, so the asnower should be expressed with two significant digits
h = 95 m
Read This
Please read pages 183 to 185 in your Science 10 textbook. Make sure you take notes on your readings to study from later. You should focus on mechanical energy and the law of conservation of energy and the calculations used in these two concepts. Remember,
if you have any questions or do not understand something, ask your teacher!
Practice Questions
-
A 31.2 kg child is jumping on a trampoline. If the child jumps vertically at an initial speed of 2.47 m/s, calculate how high the child will rise.
«math»«mtable columnspacing=¨0px¨ columnalign=¨right center left¨»«mtr»«mtd»«mi»m«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»31«/mn»«mo».«/mo»«mn»2«/mn»«mo»§#160;«/mo»«mi»kg«/mi»«/mtd»«/mtr»«mtr»«mtd»«mi»g«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»9«/mn»«mo».«/mo»«mn»81«/mn»«mo»§#160;«/mo»«mfrac»«mi mathvariant=¨normal¨»m«/mi»«msup»«mi mathvariant=¨normal¨»s«/mi»«mn»2«/mn»«/msup»«/mfrac»«/mtd»«/mtr»«mtr»«mtd»«mi»h«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mo»?«/mo»«/mtd»«/mtr»«mtr»«mtd»«mi»v«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»2«/mn»«mo».«/mo»«mn»47«/mn»«mo»§#160;«/mo»«mi mathvariant=¨normal¨»m«/mi»«mo»/«/mo»«mi mathvariant=¨normal¨»s«/mi»«/mtd»«/mtr»«/mtable»«/math»
«math»«msub»«mi»E«/mi»«mi»p«/mi»«/msub»«mo»=«/mo»«msub»«mi»E«/mi»«mi»k«/mi»«/msub»«mspace linebreak=¨newline¨»«/mspace»«mi»m«/mi»«mi»g«/mi»«mi»h«/mi»«mo»=«/mo»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«mi»m«/mi»«msup»«mi»v«/mi»«mn»2«/mn»«/msup»«/math»
To isolate h, you must divide each side by mg. To move m and g to the other side, you need to use the opposite operation.
«math» «mfrac» «mrow» «mi»m«/mi» «mi»g«/mi» «mi»h«/mi» «/mrow» «mrow» «mi»m«/mi» «mi»g«/mi» «/mrow» «/mfrac» «mo»=«/mo» «mfrac» «mstyle displaystyle=¨true¨» «mfrac» «mn»1«/mn» «mn»2«/mn» «/mfrac» «mi»m«/mi» «msup» «mi»v«/mi» «mn»2«/mn» «/msup» «/mstyle» «mrow» «mi»m«/mi» «mi»g«/mi» «/mrow» «/mfrac» «/math»
Now, cancel the like terms.
«math» «mi»h«/mi» «mo»=«/mo» «mfrac» «mrow» «mstyle displaystyle=¨true¨» «mfrac» «mn»1«/mn» «mn»2«/mn» «/mfrac» «/mstyle» «msup» «mi»v«/mi» «mn»2«/mn» «/msup» «/mrow» «mi»g«/mi» «/mfrac» «/math»
«math»«mi»h«/mi»«mo»=«/mo»«mfrac»«mrow»«mfenced»«mstyle displaystyle=¨true¨»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«/mstyle»«/mfenced»«msup»«mfenced»«mrow»«mn»2«/mn»«mo».«/mo»«mn»47«/mn»«mstyle displaystyle=¨true¨»«mo»§#160;«/mo»«mfrac»«mi mathvariant=¨normal¨»m«/mi»«mi mathvariant=¨normal¨»s«/mi»«/mfrac»«/mstyle»«/mrow»«/mfenced»«mn»2«/mn»«/msup»«/mrow»«mfenced»«mrow»«mn»9«/mn»«mo».«/mo»«mn»81«/mn»«mo»§#160;«/mo»«mstyle displaystyle=¨true¨»«mfrac»«mi mathvariant=¨normal¨»m«/mi»«msup»«mi mathvariant=¨normal¨»s«/mi»«mn»2«/mn»«/msup»«/mfrac»«/mstyle»«/mrow»«/mfenced»«/mfrac»«/math»
h = 0.310 9...m
The answer must be rounded to thee significant digits.
The child will rise 0.311 m.
-
A person is playing darts and throws a 22.3 g dart with a horizontal speed of 6.13 m/s at the dartboard. The total mechanical energy of the dart is 0.765 J. Calculate the gravitational potential energy of the dart.
«math»«mtable columnspacing=¨0px¨ columnalign=¨right center left¨»«mtr»«mtd»«msub»«mi»E«/mi»«mi»m«/mi»«/msub»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»0«/mn»«mo».«/mo»«mn»756«/mn»«mo»§#160;«/mo»«mi mathvariant=¨normal¨»J«/mi»«/mtd»«/mtr»«mtr»«mtd»«mi»m«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»22«/mn»«mo».«/mo»«mn»3«/mn»«mo»§#160;«/mo»«mi mathvariant=¨normal¨»g«/mi»«mo»=«/mo»«mn»22«/mn»«mo».«/mo»«mn»3«/mn»«mo»§#160;«/mo»«mi mathvariant=¨normal¨»g«/mi»«mo»§#215;«/mo»«mfenced»«mfrac»«mrow»«mn»1«/mn»«mo»§#160;«/mo»«mi»kg«/mi»«/mrow»«mrow»«mn»1«/mn»«mo»§#160;«/mo»«mn»000«/mn»«mo»§#160;«/mo»«mi mathvariant=¨normal¨»g«/mi»«/mrow»«/mfrac»«/mfenced»«mo»=«/mo»«mn»0«/mn»«mo».«/mo»«mn»022«/mn»«mo»§#160;«/mo»«mn»3«/mn»«mo»§#160;«/mo»«mi»kg«/mi»«/mtd»«/mtr»«/mtable»«/math»
Since m is measured in kilograms, we have to convert our units of g to kg.
«math»«mtable columnspacing=¨0px¨ columnalign=¨right center left¨»«mtr»«mtd»«mi»g«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»9«/mn»«mo».«/mo»«mn»81«/mn»«mo»§#160;«/mo»«mfrac»«mi mathvariant=¨normal¨»m«/mi»«msup»«mi mathvariant=¨normal¨»s«/mi»«mn»2«/mn»«/msup»«/mfrac»«/mtd»«/mtr»«mtr»«mtd»«mi»v«/mi»«/mtd»«mtd»«mo»=«/mo»«/mtd»«mtd»«mn»6«/mn»«mo».«/mo»«mn»13«/mn»«mo»§#160;«/mo»«mi mathvariant=¨normal¨»m«/mi»«mo»/«/mo»«mi mathvariant=¨normal¨»s«/mi»«/mtd»«/mtr»«/mtable»«/math»
Em = Ep + Ek
To isolate Ep by itself, subtract both sides by Ek. To move Ek to the other side, you need to use the opposite operation.
«math» «mtable columnspacing=¨0px¨ columnalign=¨right center left¨» «mtr» «mtd» «msub» «mi»E«/mi» «mi»m«/mi» «/msub» «mo»-«/mo» «msub» «mi»E«/mi» «mi»k«/mi» «/msub» «/mtd» «mtd» «mo»=«/mo» «/mtd» «mtd» «mfenced» «mrow» «msub» «mi»E«/mi» «mi»p«/mi» «/msub» «mo»+«/mo» «msub» «mi»E«/mi» «mi»k«/mi» «/msub» «/mrow» «/mfenced» «mo»-«/mo» «msub» «mi»E«/mi» «mi»k«/mi» «/msub» «/mtd» «/mtr» «mtr» «mtd» «msub» «mi»E«/mi» «mi»p«/mi» «/msub» «/mtd» «mtd» «mo»=«/mo» «/mtd» «mtd» «msub» «mi»E«/mi» «mi»m«/mi» «/msub» «mo»-«/mo» «msub» «mi»E«/mi» «mi»k«/mi» «/msub» «/mtd» «/mtr» «/mtable» «/math»
Remember that «math» «msub» «mi»E«/mi» «mi»k«/mi» «/msub» «mo»=«/mo» «mfrac» «mn»1«/mn» «mn»2«/mn» «/mfrac» «mi»m«/mi» «msup» «mi»v«/mi» «mn»2«/mn» «/msup» «/math».
So, «math» «msub» «mi»E«/mi» «mi»p«/mi» «/msub» «mo»=«/mo» «msub» «mi»E«/mi» «mi»m«/mi» «/msub» «mo»-«/mo» «mfrac» «mn»1«/mn» «mn»2«/mn» «/mfrac» «mi»m«/mi» «msup» «mi»v«/mi» «mn»2«/mn» «/msup» «/math».
«math»«msub»«mi»E«/mi»«mi»p«/mi»«/msub»«mo»=«/mo»«mn»0«/mn»«mo».«/mo»«mn»765«/mn»«mo»§#160;«/mo»«mi mathvariant=¨normal¨»J«/mi»«mo»-«/mo»«mfrac»«mn»1«/mn»«mn»2«/mn»«/mfrac»«mfenced»«mrow»«mn»0«/mn»«mo».«/mo»«mn»022«/mn»«mo»§#160;«/mo»«mn»3«/mn»«mo»§#160;«/mo»«mi»kg«/mi»«/mrow»«/mfenced»«msup»«mfenced»«mrow»«mn»6«/mn»«mo».«/mo»«mn»13«/mn»«mo»§#160;«/mo»«mfrac»«mi mathvariant=¨normal¨»m«/mi»«mi mathvariant=¨normal¨»s«/mi»«/mfrac»«/mrow»«/mfenced»«mn»2«/mn»«/msup»«/math»
Ep = 0.795 J – 0.418 92...J
Ep = 0.346 0...J
The answer must be rounded to three significant digits.
The potential energy of the dart is 0.346 J.