- 4. Express each of the mixed radicals as an entire radical.
 - a. $5\sqrt{2}$

$$5\sqrt{2} = \sqrt{5^2 \times 2}$$
$$= \sqrt{25 \times 2}$$
$$= \sqrt{50}$$

b.
$$2\sqrt[3]{9}$$

$$2\sqrt[3]{9} = \sqrt[3]{2\sqrt[3]{3}} \times \sqrt[3]{9}$$
$$= \sqrt[3]{2\sqrt[3]{3}} \times 9$$
$$= \sqrt[3]{8} \times 9$$
$$= \sqrt[3]{72}$$

Please complete Lesson 4.2 Explore Your Understanding Assignment located in Workbook 4.2 before proceeding to Lesson 4.3.

Lesson 4.3: The Irrational Number System

Practice - III

- 1. What is the difference between Rational, Irrational, and Real Numbers?
 Rational Numbers can be written as fractions and as repeating or terminating decimals.
 Irrational Numbers are non-terminating and non-repeating decimals. The Real Number system comprises both Rational and Irrational Numbers.
- 2. Using benchmarks, what is the approximate value of $\sqrt[3]{2185}$?

$$\sqrt[3]{1728} < \sqrt[3]{2185} < \sqrt[3]{2197}$$

 $\sqrt[3]{12^3} < \sqrt[3]{2185} < \sqrt[3]{13^3}$
 $12 < \sqrt[3]{2185} < 13$
 $\sqrt[3]{2185} \doteq 12.9$

3. Classify each of the following numbers according to the subsets to which they belong.

a.
$$-\sqrt[3]{-343} = -1 \times \sqrt[3]{(-7)^3} = -1 \times (-7) = 7$$

Natural, Whole, Integer, Rational, Real

b.
$$-\sqrt{81} = -\sqrt{9^2} = -9$$
 Integer, Rational, Real

c.
$$-\frac{\sqrt[3]{64}}{3} = -\frac{\sqrt[3]{64}}{3} = -\frac{4}{3}$$
 Rational, Real

4. Arrange the following numbers from greatest to least.

$$-\sqrt[3]{-8}$$
, $\sqrt[3]{-8}$, $\sqrt[3]{-27}$, $-\sqrt[3]{1}$, $\sqrt[3]{27}$

$$-\sqrt[3]{-8} = -1 \times \sqrt[3]{(-2)^3} = -1 \times -2 = 2$$

$$\sqrt[3]{-8} = \sqrt[3]{(-2)^3} = -2$$

$$\sqrt[3]{-27} = \sqrt[3]{(-3)^3} = -3$$

$$-\sqrt[3]{1} = -1 \times \sqrt[3]{1} = -1 \times 1 = -1$$

$$\sqrt[3]{27} = \sqrt[3]{(3)^3} = 3$$

The order from greatest to least is:
$$\sqrt[3]{27}$$
, $-\sqrt[3]{-8}$, $-\sqrt[3]{1}$, $\sqrt[3]{-8}$, $\sqrt[3]{-27}$.

Please complete Lesson 4.3 Explore Your Understanding Assignment located in Workbook 4.3 before proceeding to Lesson 4.4.

Lesson 4.4: Exponent Laws

Practice – IV

1. Apply the exponent laws to simplify the following expressions.

a.
$$\frac{(2x^{12}y^2)(7x^{-4}y^7)}{(28x^2y)(xy^2)}$$

$$\frac{(2x^{12}y^2)(7x^{-4}y^7)}{(28x^2y)(xy^2)} = \frac{14x^8y^9}{28x^3y^3}$$
$$= \frac{x^5y^6}{2}$$