

Practice - IV

- 1. In Lesson 5.3, when we were trying to determine a strategy for factoring trinomials of the form $ax^2 + bx + c$, $a \ne 1$, the binomial factors (mx + p) and (nx + q) were multiplied to give $mnx^2 + (mq + np)x + pq$. Match each expression to the appropriate section of the algebra tile array shown. Explain your choices.
 - *mn*
 - mq
 - *np*
 - pq
 - mx + p
 - nx + q

The expression mn corresponds to section 3. The product represents the coefficient of x^2 (the a-value) of the trinomial $ax^2 + bx + c$.

The expressions mq and np correspond to sections 4 and 5. The sum of the two products represent the coefficient of x (the b-value) of the trinomial $ax^2 + bx + c$.

The expression pq corresponds to section 6. The product represents the constant term (the c-value) of the trinomial $ax^2 + bx + c$.

The binomials mx + p and nx + q correspond to sections 1 and 2. These binomials represent the factors of the trinomial $ax^2 + bx + c$.

2. Factor each of the following.

a.
$$15x^2 + 16x + 4$$

$$ac = 60$$
 and $b = 16$

The integers 10 and 6 have a product of 60 and a sum of 16.

$$15x^{2} + 16x + 4 = 15x^{2} + (10+6)x + 4$$

$$= 15x^{2} + 10x + 6x + 4$$

$$= (15x^{2} + 10x) + (6x + 4)$$

$$= 5x(3x+2) + 2(3x+2)$$

$$= (3x+2)(5x+2)$$

Appendix Unit 5: Polynomials

b.
$$4x^2 - 4x + 1$$

$$ac = 4$$
 and $b = -4$

The integers -2 and -2 have a product of 4 and a sum of -4.

$$4x^{2} - 4x + 1 = 4x^{2} + (-2 - 2)x + 1$$

$$= 4x^{2} - 2x - 2x + 1$$

$$= (4x^{2} - 2x) + (-2x + 1)$$

$$= 2x(2x - 1) - 1(2x - 1)$$

$$= (2x - 1)(2x - 1)$$

c.
$$-2a^2 - 7a - 3$$

$$ac = 6$$
 and $b = -7$

The integers -6 and -1 have a product of 6 and a sum of -7.

$$-2a^{2} - 7a - 3 = -2a^{2} + (-6 - 1)a - 3$$

$$= -2a^{2} - 6a - a - 3$$

$$= (-2a^{2} - 6a) + (-a - 3)$$

$$= -2a(a + 3) - 1(a + 3)$$

$$= (a + 3)(-2a - 1)$$

3. Mariah tried to factor $3x^2 + 23x - 36$. Her work is shown.

The value of ac is -108 and the value of b is 23. Two numbers that add to give 23 and multiply to give -108 are 27 and -4. This means the factors of $3x^2 + 23x - 36$ are (x+27)(x-4).

Comment on Mariah's strategy. If she made an error, make the necessary corrections.

The first steps towards factorization are correct. However, when the coefficient of the x^2 -term is not 1, decomposition of the x-term is necessary. This means that once the integers 27 and -4 are determined, the next step cannot be to simply write the factors as (x+27) and (x-4). Instead, she could have finished as shown.

$$3x^{2} + 23x - 36 = 3x^{2} + (27 - 4)x - 36$$

$$= 3x^{2} + 27x - 4x - 36$$

$$= (3x^{2} + 27x) + (-4x - 36)$$

$$= 3x(x + 9) - 4(x + 9)$$

$$= (x + 9)(3x - 4)$$

Please return to *Unit 5: Polynomials Lesson 5.3* in the *Module* to continue your exploration.