## **Lesson 8.3: Solving Systems of Linear Equations by Elimination**



## Practice - IV

1. Use the following example to explain why the order of subtraction is not important when solving systems of equations by elimination.

$$5x + 9y = 7 
- (6x + 9y = 25) 
-x + 0y = -18$$

$$6x + 9y = 25 
- (5x + 9y = 7) 
x + 0y = 18$$

The order of subtraction is not important because the resulting equations are equivalent. If both sides of the first equation are multiplied by -1, the second equation is produced. Both equations also simplify to x = 18.

2. The subtraction of two equations is shown.

$$5x + 3y - 1 = 0 
- (2x - y + 4 = 0) 
3x + 4y - 5 = 0$$

Explain why this subtraction is not useful for solving the linear system 5x + 3y - 1 = 0 and 2x - y + 4 = 0.

When using the elimination method, the purpose of subtracting two equations is to produce a new equation with fewer variables. In the subtraction shown, there is no reduction in variables.

3. Solve the following systems of equations by elimination. Verify the solutions.

a. 
$$52 - a = 4b$$
  
 $70 - a = 6b$   

$$52 - a = 4b$$

$$- (70 - a = 6b)$$

$$-18 + 0a = -2b$$

$$18 = 2b$$

$$52 - a = 4b$$

$$52 - a = 4(9)$$

$$52 - a = 36$$

$$-a = -16$$

$$a = 16$$

The solution is a = 16 and b = 9.

Verify the solution.

$$52 - a = 4b$$

| Left Side | Right Side |
|-----------|------------|
| 52 – a    | 4b         |
| 52 – 16   | 4(9)       |
| 36        | 36         |
| LS = RS   |            |

$$70 - a = 6b$$

| Left Side | Right Side |
|-----------|------------|
| 70 - a    | 6 <i>b</i> |
| 70 – 16   | 6(9)       |
| 54        | 54         |
| LS = RS   |            |

b. 
$$3x + 5y = -2$$

$$x-y=-6$$

$$x - y = -6$$

$$3(x-y) = 3(-6)$$

$$3x - 3y = -18$$

$$3x + 5y = -2$$
- ( 3x - 3y = -18 )
$$0x + 8y = 16$$

$$8y = 16$$

$$y = 2$$

$$x - y = -6$$

$$x - 2 = -6$$

$$x = -4$$

The solution is (-4,2).

Verify the solution.

$$3x + 5y = -2$$

| 3N : 3y 2  |            |
|------------|------------|
| Left Side  | Right Side |
| 3x + 5y    | -2         |
| 3(-4)+5(2) |            |
| -2         |            |
| LS = RS    |            |

$$x - y = -6$$

| Left Side | Right Side |
|-----------|------------|
| x - y     | -6         |
| -4 - 2    |            |
| -6        |            |
| LS = RS   |            |

c. 
$$7x = 11 + 5y$$

$$8y = -6x - 9$$

$$7x = 11 + 5y$$

$$7x - 5y = 11$$

$$8(7x - 5y) = 8(11)$$

$$56x - 40y = 88$$

$$8y = -6x - 9$$

$$6x + 8y = -9$$

$$5(6x + 8y) = 5(-9)$$

$$30x + 40y = -45$$

$$56x + 40y = 88$$

$$\begin{array}{rcl}
 & 50x + 40y - 88 \\
 & + (30x - 40y = -45) \\
 & 86x + 0y = 43 \\
 & 86x = 43 \\
 & x = \frac{1}{2}
 \end{array}$$

$$86x + 0y = 43$$
$$86x = 43$$

$$86x = 43$$

$$= \frac{1}{2}$$

$$7x = 11 + 5y$$

$$7\left(\frac{1}{2}\right) = 11 + 5y$$

$$\frac{7}{2} = 11 + 5y$$

$$-\frac{15}{2} = 5y$$

$$-\frac{3}{2} = y$$

The solution is  $(\frac{1}{2}, -\frac{3}{2})$ .

Verify the solution.

$$7x = 11 + 5y$$

| Left Side                   | Right Side                        |
|-----------------------------|-----------------------------------|
| 7 <i>x</i>                  | 11 + 5y                           |
| $7\left(\frac{1}{2}\right)$ | $11 + 5\left(-\frac{3}{2}\right)$ |
| $\frac{7}{2}$               | $\frac{7}{2}$                     |
| LS = RS                     |                                   |

$$8y = -6x - 9$$

| Left Side                               | Right Side                                       |
|-----------------------------------------|--------------------------------------------------|
| $8y$ $8\left(-\frac{3}{2}\right)$ $-12$ | $-6x - 9$ $-6\left(\frac{1}{2}\right) - 9$ $-12$ |
| LS = RS                                 |                                                  |

d. 
$$A - 2B = -4$$

$$2A + 3B = 10$$

$$A - 2B = -4$$

$$2(A - 2B) = 2(-4)$$

$$2A - 4B = -8$$

$$\begin{array}{rcl}
2A & - & 4B & = & -8 \\
- & (2A & + & 3B & = & 10 \\
\hline
0A & - & 7B & = & -18 \\
-7B & = & -18 \\
B & = & \frac{18}{7}
\end{array}$$

$$A - 2B = -4$$

$$A - 2\left(\frac{18}{7}\right) = -4$$

$$A = \frac{8}{7}$$

The solution is  $A = \frac{8}{7}$  and  $B = \frac{18}{7}$ .

Verify the solution.

$$A - 2B = -4$$

| Left Side                                                                                 | Right Side |
|-------------------------------------------------------------------------------------------|------------|
| $ \begin{array}{c} A - 2B \\ \frac{8}{7} - 2\left(\frac{18}{7}\right) \\ -4 \end{array} $ | -4         |
| LS = RS                                                                                   |            |

$$2A + 3B = 10$$

| Left Side                                                | Right Side |
|----------------------------------------------------------|------------|
| 2A + 3B                                                  | 10         |
| $2\left(\frac{8}{7}\right) + 3\left(\frac{18}{7}\right)$ |            |
| 10                                                       |            |
| LS = RS                                                  |            |

4. Attempt to solve the following systems of equations. How is each pair of lines related?

a. 
$$x + 3y = 11$$
  
 $4x + 12y = 44$   
 $x + 3y = 11$   
 $4(x + 3y) = 4(11)$   
 $4x + 12y = 44$   
 $4x + 12y = 44$   
 $-(4x + 12y = 44)$   
 $0x + 0y = 0$ 

Attempting to solve the system produced a true statement, so there are an infinite number of solutions and the two lines are coincident.

b. 
$$2x - 6y = 9$$
  
 $3x - 9y = 12$   
 $3(2x - 6y) = 3(9)$   
 $6x - 18y = 27$   
 $2(3x - 9y) = 2(12)$   
 $6x - 18y = 24$   
 $6x - 18y = 27$   
 $-6x - 18y = 24$   
 $0 = 3$ 

Attempting to solve the system produced a false statement, so there is no solution and the two lines are parallel.

Please complete Lesson 8.3 Explore Your Understanding Assignment located in Workbook 8.3 before proceeding to Lesson 8.4.