Using a calculator to determine the approximate value is another method to compare and order Irrational Numbers.

Example 3

Order the following numbers on the number line provided.

$$2\sqrt{21}, 3\sqrt{11}, \sqrt{32}, \sqrt{4}, 4\sqrt{5}$$

$2\sqrt{21}$	$= 2 \times \sqrt{21} = 2 \times 4.582575695 \doteq 9.2$
$3\sqrt{11}$	$= 3 \times \sqrt{11} = 3 \times 3.31662479 \doteq 9.9$
$\sqrt{32}$	= 5.656854249 = 5.7
$\sqrt{4}$	= 2
$4\sqrt{5}$	$= 4 \times \sqrt{5} = 4 \times 2.236067977 \doteq 8.9$

Check Up

- 1. What are the benchmark values to use when estimating the value of $\sqrt{221}$?
- 2. Evaluate $\sqrt{221}$, to the nearest hundredth.

3. Classify each of the numbers listed in the table according to their Real Number subsets.

Number	Natural	Whole	Integers	Rational	Irrational	Real
4.198						
$\sqrt{256}$						
104						
³√125						
$\sqrt{8}$						
$-8\frac{2}{3}$						

	•
\checkmark	

Compare your answers.

1. What are the benchmark values to use when estimating the value of $\sqrt{221}$?

$$\sqrt{196} < \sqrt{221} < \sqrt{225}$$

2. Evaluate $\sqrt{221}$, to the nearest hundredth.

14.87

3. Classify each of the numbers listed in the table according to their Real Number subsets.

Number	Natural	Whole	Integers	Rational	Irrational	Real
$4.1\overline{98}$				\checkmark		\checkmark
$\sqrt{256}$	√	√	√	√		√
104	√	√	√	√		√
³√125	√	√	√	√		√
$\sqrt{8}$					√	√
$-8\frac{2}{3}$				√		√

Even though Irrational Numbers are aptly named, these complicated numbers do fit into a subset of the Real Number system. It is valuable to learn where and when Irrational Numbers arise as they fill the gaps in a number line and play significant roles in science and mathematics.

Multimedia

Additional video examples pertaining to this lesson are available.