Factorization can be checked by multiplying the factors. If a polynomial was factored correctly, the product of its factors should equal the original polynomial expression.

Example 2

Verify that $4x(x^2 - 4x - 5)$ is equivalent to $4x^3 - 16x^2 - 20x$.

$$4x(x^2 - 4x - 5) = (4x)(x^2) + (4x)(-4x) - (4x)(5)$$
$$= 4x^3 - 16x^2 - 20x$$

Check Up

1. a. Factor $8mn^2 - 12m^2n - 4m^2n^2$ using the GCF of its terms.

b. Verify your answer to a. by multiplying the factors.

Compare your answers.

1. a. Factor $8mn^2 - 12m^2n - 4m^2n^2$ using the GCF of its terms.

$$8mn^{2} = 2 \cdot 2 \cdot 2 \cdot m \cdot n \cdot n$$

$$12m^{2}n = 2 \cdot 2 \cdot 3 \cdot m \cdot m \cdot n$$

$$4m^2n^2=2\cdot 2\cdot m\cdot m\cdot n\cdot n$$

The GCF is $2 \cdot 2 \cdot m \cdot n = 4mn$.

$$\frac{8mn^2}{4mn} = 2n$$
 $\frac{-12m^2n}{4mn} = -3m$ $\frac{-4m^2n^2}{4mn} = -mn$

$$8mn^2 = (4mn)(2n) \qquad -12m^2n = (4mn)(-3m) \qquad -4m^2n^2 = (4mn)(-mn)$$

$$8mn^{2} - 12m^{2}n - 4m^{2}n^{2} = (4mn)(2n) - (4mn)(3m) - (4mn)(mn)$$
$$= 4mn(2n - 3m - mn)$$

b. Verify your answer to a. by multiplying the factors.

$$4mn(2n - 3m - mn) = (4mn)(2n) - (4mn)(3m) - (4mn)(mn)$$
$$= 8mn^2 - 12m^2n - 4m^2n^2$$

The GCF for a polynomial expression will not always be a monomial. In the next example, the GCF of the expression is a binomial.

Multimedia

A video demonstration of the solution for *Example 3* has been provided.

Example 3

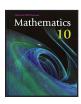
Factor (2x+1)(4)+(2x+1)(x).

2x + 1 is a common factor to both (2x + 1)(4) and (2x + 1)(x). There are no factors common to 4 and x, other than 1, so 2x + 1 is the GCF.

2x + 1 can be moved outside a set of brackets using the distributive property in reverse.

$$(2x+1)(4)+(2x+1)(x)=(2x+1)(4+x)$$

Check Up


1. Factor $(x+y)(x^2) - (x+y)(3y)$.

Compare your answer.

1. Factor $(x + y)(x^2) - (x + y)(3y)$.

$$(x+y)(x^2)-(x+y)(3y)=(x+y)(x^2-3y)$$

For further information about factoring polynomials using a GCF, see pp. 214 - 219 of *Mathematics 10*.