Notice in *Example 1*, that switching the order of the points in the slope formula has no bearing on the end result. $$m = \frac{\text{rise}}{\text{run}}$$ $$= \frac{y_1 - y_2}{x_1 - x_2}$$ $$= \frac{2 - 8}{3 - 6}$$ $$= \frac{-6}{-3}$$ $$= 2$$ You can think of this line as having a positive rise and a positive run when travelling from point P_1 to point P_2 , or as having a negative rise and a negative run travelling from point P_2 to point P_1 . When using the slope formula, be sure that x_1 and y_1 come from one point and that x_2 and y_2 come from the second point. $$\frac{y_2-y_1}{x_2-x_1}$$ x_2 and y_2 x_1 and y_1 represent one point represent another ## **Check Up** 1. Determine the slope of a line that passes through the points (22,87) and (108,15). 2. Sketch a line with a slope of 0. Then, sketch a line with an undefined slope. \checkmark Compare your answers. 1. Determine the slope of a line that passes through the points (22,87) and (108,15). It may help to begin by sketching a diagram. From the diagram, you know the slope will be negative. $$m = \frac{\text{rise}}{\text{run}}$$ $$= \frac{y_2 - y_1}{x_2 - x_1}$$ $$= \frac{15 - 87}{108 - 22}$$ $$= \frac{-72}{86}$$ $$= -\frac{36}{12}$$ 2. Sketch a line with a slope of 0. Then, sketch a line with an undefined slope.