Notice in *Example 1*, that switching the order of the points in the slope formula has no bearing on the end result.

$$m = \frac{\text{rise}}{\text{run}}$$

$$= \frac{y_1 - y_2}{x_1 - x_2}$$

$$= \frac{2 - 8}{3 - 6}$$

$$= \frac{-6}{-3}$$

$$= 2$$

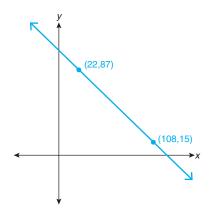
You can think of this line as having a positive rise and a positive run when travelling from point P_1 to point P_2 , or as having a negative rise and a negative run travelling from point P_2 to point P_1 .

When using the slope formula, be sure that x_1 and y_1 come from one point and that x_2 and y_2 come from the second point.

$$\frac{y_2-y_1}{x_2-x_1}$$
 x_2 and y_2
 x_1 and y_1
represent one point represent another

Check Up

1. Determine the slope of a line that passes through the points (22,87) and (108,15).


2. Sketch a line with a slope of 0. Then, sketch a line with an undefined slope.

 \checkmark

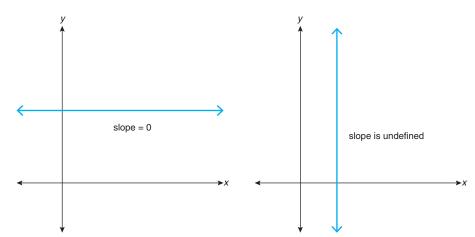
Compare your answers.

1. Determine the slope of a line that passes through the points (22,87) and (108,15).

It may help to begin by sketching a diagram.

From the diagram, you know the slope will be negative.

$$m = \frac{\text{rise}}{\text{run}}$$


$$= \frac{y_2 - y_1}{x_2 - x_1}$$

$$= \frac{15 - 87}{108 - 22}$$

$$= \frac{-72}{86}$$

$$= -\frac{36}{12}$$

2. Sketch a line with a slope of 0. Then, sketch a line with an undefined slope.

