y = 3x + 4the slope is 3 the *y*-intercept is 4

The *y*-intercept can be represented by the point of intersection between the graph and the *y*-axis or by just the *y*-value of that point of intersection. Both of the following statements represent the same information.

- The y-intercept occurs at (0,4).
- The *y*-intercept is 4.

The *y*-intercept is more generally known as the **vertical-axis intercept**. Although *y* is a common label for the vertical axis, other variables can be used. The graph below shows a *d*-intercept.

Multimedia

A video explaining the slope-intercept form of a linear equation is provided.

Check Up

1. State the slope and y-intercept of the graphs of each of the following linear relations.

a.
$$y = 4x - 7$$

b.
$$y = -\frac{1}{2}x + 9$$

c.
$$16x = y + 23$$

Lesson 7.1: Slope-Intercept Form of a Linear Equation Unit 7: Equations and Graphs of Linear Relations

Compare your answers.

1. State the slope and y-intercept of the graphs of each of the following linear relations.

a.
$$y = 4x - 7$$

The slope is 4 and the *y*-intercept is -7.

b.
$$y = -\frac{1}{2}x + 9$$

The slope is $-\frac{1}{2}$ and the *y*-intercept is 9.

c.
$$16x = y + 23$$

Rearrange this equation into slope-intercept form to interpret it correctly.

$$16x = y + 23$$

$$16x - 23 = y + 23 - 23$$

$$16x - 23 = v$$

The slope is 16 and the *y*-intercept is -23.