Multimedia

A video demonstration of the solution for *Example 2* is provided.

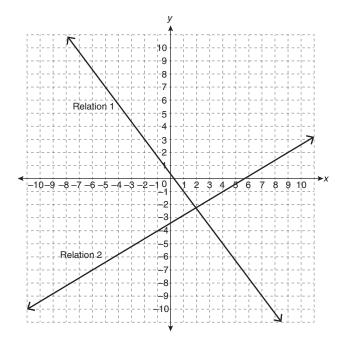
Example 2

The equation y - 4 = 2.7(x + 3) represents a linear relation. State the slope of the graph of this relation and a point you know will be on the graph of the relation.

The equation is in slope-point form, so the slope can be determined by inspection.

$$m = 2.7$$

To interpret this equation correctly, it may help to write the addition as a subtraction of a negative. Doing so will help the equation better resemble the form $y - y_1 = m(x - x_1)$.

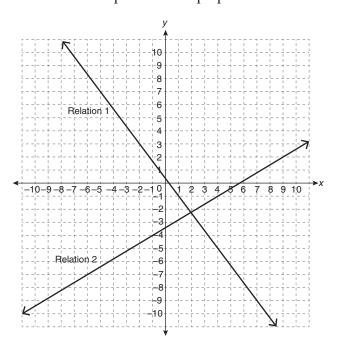

$$y-4 = m(x-(-3))$$

The point (-3,4) lies on the graph of the relation.

Check Up

1. Determine an equation in slope-point form for each relation represented below.

Multimedia



A video demonstration of the solution for this *Check Up* question is provided.

Compare your answer.

1. Determine an equation in slope-point form for each relation represented below.

The graph of Relation 1 has a slope of $-\frac{4}{3}$ and passes through the points (-5,7), (-2,3), (1,-1), (4,-5), and (7,-9). Any of these points could be entered into the slope-point equation. The equation shown uses (-5,7).

$$y - y_1 = m(x - x_1)$$

$$y - 7 = -\frac{4}{3}(x - (-5))$$

$$y - 7 = -\frac{4}{3}(x + 5)$$

The graph of Relation 2 has a slope of $\frac{3}{5}$ and passes through the points (-6, -7), (-1, -4), (4, -1), and (9, 2). Again, any of these points could be entered into the slope-point equation. The equation shown uses (-6, -7).

$$y - y_1 = m(x - x_1)$$
$$y - (-7) = \frac{3}{5}(x - (-6))$$
$$y + 7 = \frac{3}{5}(x + 6)$$