Example 1

...continued

Substitute these *x*- and *y*-values into each of the original equations to verify the solution.

$$x = 3y$$

Left Side	Right Side	
x	3 <i>y</i>	
6	3(2)	
	6	
LS = RS		

x + 4y = 14

Left Side	Right Side	
x + 4y	14	
6 + 4(2)		
14		
LS = RS		

Check Up

1. Solve the following system of equations by substitution. Verify the solution.

$$11x + 2y = 76$$

$$y = 4x$$

Compare your answer.

1. Solve the following system of equations by substitution. Verify the solution.

$$11x + 2y = 76$$

$$y = 4x$$

Substitute 4x for y in the first equation.

$$11x + 2y = 76$$
$$11x + 2(4x) = 76$$

$$19x = 76$$

$$x = 4$$

The *x*-value of the solution is 4. Substitute this value into one of the original equations to determine the *y*-value.

$$y = 4x$$

$$y = 4(4)$$

$$y = 16$$

The solution is (4,16).

Verify the solution.

You can substitute the known value back into any equation that includes both an *x*- and a *y*-value. Choose an equation that is easy to work with.

The equation y = 4x was chosen because it is simpler than 11x + 2y = 76.

$$11x + 2y = 76$$

Left Side	Right Side	
11x + 2y	76	
11(4) + 2(16)		
76		
LS = RS		

$$y = 4x$$

Left Side	Right Side
у	4 <i>x</i>
16	4x $4(4)$
	16
LS = RS	

So far, the systems solved by substitution have included an equation where one of the variables was isolated. This is not always the case and often a variable will need to be isolated before substitution can be used.