Lesson 6: Surface Area and Volume Problem Solving

Are You Ready? Possible Answers

- a. Surface area measures the amount of space, in square units, that covers a surface of a 3-D object.
 - b. Volume measures the amount of space, in cubic units, occupied by a 3-D object.
- 2. a. The following are the correct surface area calculations.

i.
$$SA_{\text{cyl}} = 2\pi r^2 + 2\pi r h$$

$$= 2\pi (2.3 \text{ m})^2 + 2\pi (2.3 \text{ m})(4.6 \text{ m})$$

$$= 33.24 \text{ m}^2 + 66.48 \text{ m}^2 \qquad \leftarrow \text{ These values have been rounded to the nearest hundredth.}$$

$$= 99.71 \text{ m}^2 \qquad \qquad \text{Note that exact values were used to obtain the final answer.}$$

ii.
$$SA_{\rm sph}=4\pi r^2$$

= $4\pi \left(13.2~{\rm cm}\right)^2$
= 2189.56 cm²

iii.
$$SA_{pyr} \stackrel{=}{=} A_{base} + A_{faces}$$

= 24 ft $^2 + 4(0.5 \times 24 \text{ ft } \times 37 \text{ ft})$
= 576 ft $^2 + 1776 \text{ ft}^2$
= 2352 ft 2

iv.
$$SA_{con} = \pi r^2 + 2\pi rs$$

= π (5 cm) + 2π (5 cm)(13 cm)
= 78.54 cm² + 408.41 cm²
= 486.95 cm²

b. The following are the correct volume calculations.

i.
$$V_{\rm cyl} = \pi r^2 h$$
 $V_{\rm cyl} = \pi \ (2.3 \ {\rm m})^2 \ (4.6 \ {\rm m})$ $V_{\rm cyl} = 76.4 \ {\rm m}^3$

ii.
$$V_{\rm sph} = \frac{4}{3} \pi r^3$$

$$V_{\rm sph} = \frac{4}{3} \pi \ (\text{13.2 cm})^3$$

$$V_{\rm sph} = 9634.1 \ \text{cm}^3$$

iii.
$$V_{\rm pyr} = \frac{1}{3} \ \ \text{area of base height}$$

$$V_{\rm pyr} = \frac{1}{3} \ \ (24 \ \text{ft} \times 24 \ \text{ft} \times 35 \ \text{ft})$$

$$V_{\rm pyr} = 6720~{\rm ft}^3$$

iv.
$$V_{\text{con}} = \frac{1}{3}\pi r^2 h$$

 $V_{\text{con}} = \frac{1}{3}\pi (5 \text{ cm})^2 (12 \text{ cm})$
 $V_{\text{con}} = 314.2 \text{ cm}^3$