
Self Check: Possible Solutions:

SC 1. In the following triangle, find the missing side m. Round to the nearest hundredth.

$$\sin 24^\circ = \frac{6}{m}$$

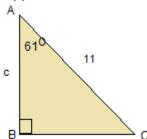
Multiply each side by m and then cancel the m's on the right

$$m(\sin 24^{\circ}) = m\left(\frac{6}{m}\right)$$

$$m(\sin 24^\circ) = m\left(\frac{6}{m^\circ}\right)$$

$$m(\sin 24^0) = 6$$

Divide each side by sin 24°,


$$\frac{m(\sin 24^{\circ})}{\sin 24^{\circ}} = \frac{6}{\sin 24^{\circ}}$$

$$m = \frac{6}{\sin 24^0}$$

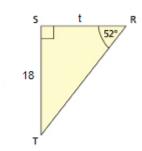
$$m = 14.75$$

 ${\bf SC\ 2.}$ In the following triangle, find the missing side c. Round to the nearest hundredth.

NOTE: Labeling notation has the lower case letter on the side ACROSS from the angle that uses upper case letter

$$\cos 61^0 = \frac{c}{11}$$

Multiply each side by 11 and then cancel the 11's on the right to isolate the variable c


$$11(\cos 61^0) = 11\left(\frac{c}{11}\right)$$

$$11(\cos 61^{\circ}) = 11\left(\frac{c}{11}\right)$$

Now
$$c = 11(\cos 61^{\circ})$$

c = 5.33

SC 3. Find the length of t in the following diagram. Round to the nearest hundredth.

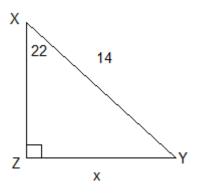
$$\tan 52^o = \frac{18}{t}$$

Multiply each side by t and then cancel the t's on the right

$$t(\tan 52^{\circ}) = t\left(\frac{18}{t}\right)$$

$$t(\tan 52^\circ) = t\left(\frac{18}{t}\right)$$

Divide by tan 52


$$\frac{t(\tan 52^{0})}{\tan 52^{o}} = \frac{18}{\tan 52^{o}}$$

$$t = \frac{18}{\tan 52^{\circ}}$$

t=14.06

SC4: Given the right triangle, XYZ, with <Z =90°, <X = 22°, and z = 14 cm, find x. Round to the nearest hundredth.

Start by drawing the triangle. The Z has to be the right angle but the other angles can be in either place as long as you label the sides correctly.

NOTE: Labeling notation has the lower case letter on the side ACROSS from the angle that uses upper case letter

So that places x on the bottom side.

Since x is the opposite side and 14 is the hypotenuse, this is a sin question.

$$\sin 22^0 = \frac{x}{14}$$

multiply both sides by 14 and cancel

$$14(\sin 22^{\circ}) = 14\left(\frac{x}{14}\right)$$
$$14(\sin 22^{\circ}) = 14\left(\frac{x}{14}\right)$$

$$x = 14(\sin 22^{\circ})$$

$$x = 5.24$$