TT 5. Foundations and Pre-calculus Mathematics 10 (Pearson), questions 3.b), 9, and 11 on pages 118 and 119. **Possible Solutions**

3. b)
$$JK = JA + AK$$

$$tan15^{\circ} = \frac{JA}{3.0 \text{ cm}}$$

$$JA = (3.0 \text{ cm}) \times tan15^{\circ}$$

$$JA = 0.8 \text{ cm}$$

$$tan60^{\circ} = \frac{AK}{3.0 \text{ cm}}$$

$$AK = (3.0 \text{ cm}) \times tan60^{\circ}$$

$$AK = 5.2 \text{ cm}$$

$$JK = 0.8 \text{ cm} + 5.2 \text{ cm}$$

9. Let x = the height of the smaller tower.

= 6.0 cm

$$\tan 35^{\circ} = \frac{x}{50 \text{ m}}$$

$$x = (50 \text{ m}) \times \tan 35^{\circ}$$

$$x = 35 \text{ m}$$

Let y = the portion of the taller tower's height that exceeds the height of the shorter tower.

$$\tan 25^{\circ} = \frac{y}{50 \text{ m}}$$

 $y = (50 \text{ m}) \tan 25^{\circ}$
 $y = 23.3 \text{ m}$

The height of shorter tower is 35 m. The height of taller tower is 35 m + 23.3 m = 58.3 m.

11. Let x = the height of the higher carving. Let y = the height of the lower carving. The distance between the carvings will be given by x - y.

$$\tan 45^{\circ} = \frac{x}{15.0 \text{ m}}$$

$$x = (15.0 \text{ m}) \tan 45^{\circ}$$

$$x = 15.0 \text{ m}$$

$$\tan 35^{\circ} = \frac{y}{15.0 \text{ m}}$$

$$y = (15.0 \text{ m}) \tan 35^{\circ}$$

$$y = 10.5 \text{ m}$$

So,
$$x-y = 15.0 \text{ m} - 10.5 \text{ m}$$

= 4.5 m