Math Lab: Examining Patterns

Materials

- eight pieces of shoelace licorice of equal length (alternative to licorice—eight French fries)
- knife

Procedure

Follow the steps. Record your information in the chart:

Number of Licorice Pieces	8				
Expressed as Powers of 2	2^3				

- Step 1: Starting with eight licorice pieces, remove (or eat) four pieces.
- **Step 2:** In the first row of the chart, record the number of licorice pieces that remain.
- Step 3: Now eat half of the licorice that is left.
- Step 4: Repeat steps 1 and 2 until you have one piece of licorice left.
- **Step 5:** Use the knife to cut the remaining licorice piece into two halves.
- **Step 6:** Eat one-half of the licorice and record the fraction of licorice that is left (e.g., $\frac{1}{2}$ and $\frac{1}{4}$).
- Step 7: Repeat steps 4 and 5 until it is too difficult to cut the remaining licorice in half.
- **Step 8:** Complete the second row of the chart by writing the number of licorice pieces as powers of 2.

Lab Analysis

Answer the	following	questions
------------	-----------	-----------

- 1. What is the pattern in the first row of the chart?
- 2. What is the pattern in the second row of the chart?
- **3.** What is the value equal to 2⁰? Can you give a reason for this?
- **4.** What is the connection between the fractions in the first row and their equivalent powers of 2?
- **5.** If you were able to continue slicing the licorice in half, why would you never be able to completely eat the licorice?