EXPONENT LAWS

Exponent Law	Law Description	General Case	Example
Product Law	If the bases are		$4^3 \times 4^2 = (4 \times 4 \times 4)(4 \times 4)$
	the same and		= 4×4×4×4×4
	multiplied, keep	$a^m \times a^n = a^{m+n}$	= 4×4×4×4×4 = 4 ⁵
	the base the same		= 4°
	and add the		
	exponents.		
Quotient Law	If the bases are		$\frac{3^6}{3^4} = \frac{3 \times 3 \times 3 \times 3 \times 3 \times 3}{3 \times 3 \times 3 \times 3}$
	the same and	a^{m}	3 ⁴ 3×3×3×3
	divided, keep the	$\frac{a^m}{a^n} = a^{m-n}, a \neq 0$	= 3×3
	base the same and		= 3 ²
	subtract the		
D	exponents.		
Power of a Power	If you have a		$\left(7^{2}\right)^{4} = \left(7 \times 7\right)\left(7 \times 7\right)\left(7 \times 7\right)\left(7 \times 7\right)$
	power with a		1
	further exponent	$\left(a^{m}\right)^{n}=a^{m\times n}$	$= 7 \times 7 $
	outside, keep the base the same and		= 78
	multiply the exponents.		
Power of a	Same rule as		/o 5\3 /o 5\/o 5\/o 5\
Product	above, just be		$(2 \times 5)^3 = (2 \times 5)(2 \times 5)(2 \times 5)$
Troduct	careful to apply	(1 \m m 1 m	$= 2 \times 2 \times 2 \times 5 \times 5 \times 5$
	the exponent to all	$\left(ab\right)^m = a^m b^m$	$= 2^3 \times 5^3$
	parts in the		
	bracket.		
Power of a	Same rule as	$(a)^m$ a^m	(a) ⁴ (a)(a)(a)
Quotient	above, just be	$\left(\left(\frac{a}{b} \right)^m = \frac{a^m}{b^m}, b \neq 0$	$\left(\frac{3}{8}\right)^4 = \left(\frac{3}{8}\right)\left(\frac{3}{8}\right)\left(\frac{3}{8}\right)\left(\frac{3}{8}\right)$
	careful to apply	(b) b^m	
	the exponent to all		$= \frac{3 \times 3 \times 3 \times 3}{8 \times 8 \times 8 \times 8}$
	parts in the		3 ⁴
	bracket.		$=\frac{3^4}{8^4}$
Zero Exponent	Any power with an		
	exponent of 0, has		$\frac{2^3}{2^3} = 2^{3-3}$
	a value of 1.	$a^0 = 1$	= 2 ⁰
			= 2"
			But $\frac{2^3}{2^3} = 1$, so $2^0 = 1$.
Negative	If you have a base	1	$2^{-3} = \frac{2^{-2}}{2}$
Exponents	with a negative	$a^{-m} = \frac{1}{a^m}, a \neq 0$	2 = 2
	exponent, write	<u>د</u>	$=\frac{1}{2\times2}\div2$
	the reciprocal of		
	the base with a		$=\frac{1}{2\times2\times2}$
	positive exponent.		
			$=\frac{1}{2^3}$
			۷