Math Lab: Powers and Radicals Possible Solutions

Part A

х	x ^{1/2}	\sqrt{x}
1	$1^{\frac{1}{2}} = 1$	$\sqrt{1} = 1$
4	$4^{\frac{1}{2}} = 2$	$\sqrt{4}=2$
25	$25^{\frac{1}{2}} = 5$	$\sqrt{25} = 5$
576	$576^{\frac{1}{2}} = 24$	$\sqrt{576} = 24$
Answers may vary. (19 shown)	$19^{\frac{1}{2}} \approx 4.35889 \dots$	$\sqrt{19} pprox 4.35889\ldots$

Part B

х	x ^{1/3}	3√ <i>x</i>
1	$1^{\frac{1}{3}} = 1$	³ √1 = 1
8	$8^{\frac{1}{3}} = 2$	3√8 = 2
27	$27^{\frac{1}{3}} = 3$	³ √27 = 3
343	$343^{\frac{1}{3}} = 7$	₹343 = 7
Answers may vary. (2000 shown)	$2000^{\frac{1}{3}} \approx 12.59921\dots$	³ √2000 ≈ 12.59921

Lab Analysis

- **1.** The numbers in the second column were identical to the corresponding numbers in the third column. This pattern applies to both tables.
- 2. A negative number cannot be square rooted since there is no real number (positive or negative) that can be squared to give a negative number. In order to obtain a negative product, there must be a positive factor and a negative factor. If this were the case, then the numbers would not be identical and therefore, the result would not be considered a square in the first place. In the case of cube roots, it is possible to cube root either a negative or a positive number, since the product of three negatives is negative and the product of three positives is positive.

- **3.** Yes, the values in the second and third columns still match even if you select a number that is not a perfect square or a perfect cube.
- **4.** The exponent $\frac{1}{4}$ means fourth root. The exponent $\frac{1}{5}$ means fifth root.
- $5. \quad 47^{\frac{1}{5}} = \sqrt[5]{47}$