Number Lesson #8: Practice Test

Use the space beside the question for your rough work.

1. Which of the following numbers is not a prime factor of 14 014?

A.

B.

 \mathbb{C} .

D.

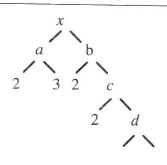
7

11

13

17

	2.	A. B.	2 3	?
Response	The state of the s		sum of all of the prime factors of 160 797 is cord your answer in the numerical response box from left to right)	
		m me	owest common multiple of 33 and 110 can be written as a product form $a \times b \times c \times d$ where a, b, c , and d are prime numbers with alue of c is	of prime factors $a < b < c < d$.
		A.	3	
		B.	5	
		C.	11	
		D.	1 100	


Numerical 2. The greatest common factor of 6 699 and 8 265 is ____ (Record your answer in the numerical response box from left to right)

- 4. The lowest common multiple of 14 and 105 is equal to the greatest common factor of the numbers P and Q. Which of the following statements must be false?
 - P is a multiple of 7.
 - Q is a multiple of 21.
 - P could be less than 200.
 - D. Q could be greater than 2 000.

Use the following information to answer the next two questions.

The partial prime factorization of a number x is shown in the tree diagram.

- If x is a perfect square, then the minimum value of d is
 - 2 A.
- B. 3
- C. 6
- D.

If x is a perfect cube, then the minimum value of x is _____.

(Record your answer in the numerical response box from left to right)

- The number represented by \otimes is irrational. The decimal representation of \otimes is 6.
 - A. terminating and repeating
- B. terminating and non-repeating
- C. non-terminating and repeating
- D. non-terminating and non-repeating
- Which of the following are rational numbers? 7.
 - I 1.01001000100001..... II $\sqrt[3]{\frac{8}{27}}$
- III $\sqrt{0.04}$
- IV 0.29

- A. III and IV only
- B. II, III and IV only
- $\mathbb{C}.$ I, II, III and IV
- D. some other combination of I, II, III and IV
- 8. The rational number $1.\overline{54}$ can be written as an improper fraction in simplest form $\frac{c}{d}$. The value of c is
 - A. 17 B. 11
 - C. 6 D.
- **9.** M and N are fixed irrational numbers satisfying 30 < M < 40 and 3 < N < 4. The value of \sqrt{M} + \sqrt{N} is best represented on the number line by
 - P A.
 - B. Q
 - $\mathbb{C}.$ R
 - D. S
- 10
- 10. Consider the following numbers. $\sqrt[3]{67}$, $\sqrt[4]{98}$, $\sqrt{19}$, $\sqrt[5]{201}$. The largest of these numbers is
 - $\sqrt{19}$

- **B.** $\sqrt[4]{98}$ **C.** $\sqrt[3]{67}$ **D.** $\sqrt[5]{201}$
- The length of a soccer field is $12\sqrt[4]{4000}$ metres. In the number $12\sqrt[4]{4000}$, the index and the radicand are respectively
 - 4 and 4 000 A.
- \mathbb{B} . 12 and 4 000
- C. 4 and 12 D. 4 000 and 4

Numerical Response 4. When $7\sqrt[3]{6}$ is written as an entire radical, the value of the radicand is _____.

(Record your answer in the numerical response box from left to right)

	1 3

Three statements are given below.

Statement 1 : $35 = 7\sqrt{5}$

Statement 2: $\sqrt{28} = 2\sqrt{7}$

Statement 3: $4\sqrt{3} = 48$

Which of the statements above is/are true?

- A. 1 only
- B. 2 only
- C. 1 and 2 only
- D. 2 and 3 only
- Three students were asked to write the radical $\sqrt{4.050}$ in another form. The answers given were:

Student II $15\sqrt{18}$ Student III $45\sqrt{2}$. Student I $405\sqrt{10}$ A correct answer was given by

- only Student III
- B. only Students II and III
- C. all three students
- some other combination of students not given above D.
- 14. The area of a circle of radius, r, is given by the formula $A = \pi r^2$.

A circle of radius 6 cm has an area of 36π cm².

If a circle has an area of 120π cm², then the exact length of its radius in cm is

- 60 A.
- $12\sqrt{10}$ B.
- $\mathbb{C}. \quad 2\sqrt{30}$
- $2\sqrt{15}$ \mathbb{D} .

5. The volume of a cube of edge length x cm is given by the formula $V = x^3$. A die has a volume of 720 mm³.

> A student determined that the exact length of each edge of the die could be written in the form $a\sqrt[3]{b}$ where a and b are whole numbers.

The value of a + b is _____.

(Record your answer in the numerical response box from left to right)

15. Consider the following three equations.

$$4\sqrt[3]{3} = \sqrt[3]{x}$$

$$5\sqrt{x} = y\sqrt{3}$$

$$4\sqrt[3]{3} = \sqrt[3]{x}$$
 $5\sqrt{x} = y\sqrt{3}$ $16\sqrt{y} = z\sqrt{10}$

Which of the statements below is correct?

A.
$$x < y < z$$
 B. $z < x < y$

$$B$$
. $z < x < y$

C.
$$y < z < x$$
 D. $z < y < x$

$$\mathbb{D}. \quad z < y < x$$

Written Response - 5 marks

Use the following information to answer the next question.

A group of students have invented a simple card game based on the real number system. 1. There are 50 cards in the deck and each card has a number written on it.

Points are awarded as follows.

Natural Number \rightarrow 4 points

Whole number \rightarrow 5 points Irrational Number → 10 points

Integer → 6 points

Rational Number → 3 points

Non-real Number → 1 point

• A student selects a card. The number on the card is 7. Explain why this card is valued at 18 points.

- A second student selects a card which has the number -5 on it.
 How many points are awarded for this card?
- In the game each student is dealt three cards and the student with the most points wins.Which of the following three students wins the game?

Student A with the following cards: $\frac{3}{4}$, $\sqrt{15}$, and 0.

Student B with the following cards: -3, $\sqrt{\frac{4}{9}}$, and π .

Student C with the following cards: $-\sqrt{36}$, $\sqrt{-36}$, and 36.

Answer Key

- 1. D
- 2. B
- 3. B
- 4. C 5. C
- **6.** D
- 7. B
- 8. A

- 9. C
- 10. A
- 11. A
- 12. B 13. B
- 14. C 15. D

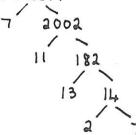
1.

4.

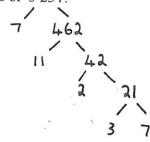
7	3		
2.	0	5	3

2.

5.


8	7	
9	2	

- 3. 2 1 6
- 1. The number 7 is a natural number, a whole number, an integer, and a rational number. The point value is 4 + 5 + 6 + 3 = 18.
 - The number -5 is an integer, and a rational number. The point value is 6 + 3 = 9.
 - Student A: $3/4 \rightarrow 3$ points, $\sqrt{15} \rightarrow 10$ points, $0 \rightarrow 14$ points, for a total of 27 points.
 - Student B: -3 \rightarrow 9 points, $\sqrt{\frac{4}{9}} \rightarrow$ 3 points, $\pi \rightarrow$ 10 points, for a total of 22 points.
 - Student C: $-\sqrt{36} \rightarrow 9$ points, $\sqrt{-36} \rightarrow 1$ point, $36 \rightarrow 18$ points, for a total of 28 points. Student C wins the game.


Number Lesson #8: Practice Test

Use the space beside the question for your rough work.

- 1. Which of the following numbers is not a prime factor of 14 014?
 - A. 7
 - B. 11
 - 13
 - 17

- 2. How many numbers in the list 7, 11, 17, 21 are prime factors of 3 234?
- 21 is not prime
- 7 and 11 are prime factors

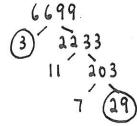
Response

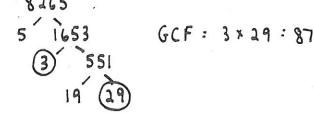
Numerical 1. The sum of all of the prime factors of 160 797 is _____.

(Record your answer in the numerical response box from left to right)

3

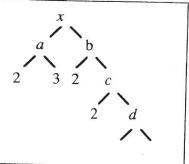
7 7657 Sum of prime factors 13 589 = 3 + 7 + 13 + 19 + 31


3. The lowest common multiple of 33 and 110 can be written as a product of prime factors in the form $a \times b \times c \times d$ where a, b, c, and d are prime numbers with a < b < c < d.


The value of c is

11

- Numerical 2. The greatest common factor of 6 699 and 8 265 is _____. (Record your answer in the numerical response box from left to right)


- 4. The lowest common multiple of 14 and 105 is equal to the greatest common factor of the numbers P and Q. Which of the following statements must be false?
 - A. P is a multiple of 7.

- Q is a multiple of 21. P could be less than 200. \times
- D. Q could be greater than 2000. LCM : $2 \times 7 \times 3 \times 5$ = 210

210 is a factor of both P and Q

Use the following information to answer the next two questions.

The partial prime factorization of a number x is shown in the tree diagram.

If x is a perfect square, then the minimum value of d is

If x is a perfect cube, then the minimum value of x is _____.

(Record your answer in the numerical response box from left to right)

$$m_{10}$$
, $\chi = 2 \times 3 \times 2 \times 2 \times 3 \times 3 = 2^3 \times 3^3 = 216$

- 6. The number represented by \otimes is irrational. The decimal representation of \otimes is
 - terminating and repeating
- B. terminating and non-repeating
- C. non-terminating and repeating
- (D.) non-terminating and non-repeating
- 7. Which of the following are rational numbers?
 - 1.01001000100001...... II $\sqrt[3]{\frac{8}{27}} = \frac{2}{3} \sqrt{\text{III}} \sqrt{0.04} = \frac{1}{5} \sqrt{\text{IV}} 0.\overline{29} = \frac{29}{99} \sqrt{\frac{29}{99}} \sqrt{\frac{29}{99}}$

- some other combination of I, II, III and IV. D.
- 8. The rational number $1.\overline{54}$ can be written as an improper fraction in simplest form $\frac{c}{d}$. The value of c is

- D.
- **9.** M and N are fixed irrational numbers satisfying 30 < M < 40 and 3 < N < 4. The value of $\sqrt{M} + \sqrt{N}$ is best represented on the number line by
 - A.
 - B.

- VN is approx. 2

- 10. Consider the following numbers. $\sqrt[3]{67}$, $\sqrt[4]{98}$, $\sqrt{19}$, $\sqrt[5]{201}$. The largest of these numbers is 4.06.. 3.14.. 4.36.. 2.89..
- **B.** $\sqrt[4]{98}$ **C.** $\sqrt[3]{67}$ **D.** $\sqrt[5]{201}$
- 11. The length of a soccer field is $12\sqrt[4]{4000}$ metres. In the number $12\sqrt[4]{4000}$, the index and the radicand are respectively.
 - 4 and 4 000
- **B.** 12 and 4 000
- C. 4 and 12
- D. 4 000 and 4

Numerical	,
Response	4

4. When $7\sqrt[3]{6}$ is written as an entire radical, the value of the radicand is _____.

(Record your answer in the numerical response box from left to right)

2058

12. Three statements are given below.

Statement 2 : $\sqrt{28} = 2\sqrt{7}$ $\sqrt{28} = \sqrt{4}\sqrt{7} = 2\sqrt{7}$

Statement 3: $4\sqrt{3} = 48 \times 4\sqrt{3} = \sqrt{16} \sqrt{3} = \sqrt{48}$

Which of the statements above is/are true?

1 only

2 only

C. 1 and 2 only

2 and 3 only

Three students were asked to write the radical $\sqrt{4050}$ in another form. The answers given were

Student I $405\sqrt{10}$ Student II $15\sqrt{18}$ Student III $45\sqrt{2}$. A correct answer was given by

405 VIO : VI64025 VIO = VI640250

only Student III

15 V18 = V225 V18 = V4050

only Students II and III

45 \(\frac{1}{2} = \sqrt{2025} \sqrt{2} = \sqrt{4050}

C. all three students

D. some other combination of students not given above.

14. The area of a circle of radius, r, is given by the formula $A = \pi r^2$.

A circle of radius 6 cm has an area of 36π cm².

If a circle has an area of 120π cm², then the exact length of its radius in cm is

60 A.

A = Mr2 = 120 M

 $12\sqrt{10}$ B.

r2 = 120

 $2\sqrt{30}$

r = 120 = 14 130 = 2 130

 $2\sqrt{15}$

Numerical 5. The volume of a cube of edge length x cm is given by the formula $V = x^3$. A die has a volume of 720 mm³.

> A student determined that the exact length of each edge of the die could be written in the form $a\sqrt[3]{b}$ where a and b are whole numbers.

The value of a + b is _____.

(Record your answer in the numerical response box from left to right)

92

$$x^{3} = 720$$

$$x = \sqrt[3]{720} = \sqrt[3]{8} \sqrt[3]{90}$$

$$a = 2$$

$$b = 90$$

$$2 \sqrt[3]{90}$$

15. Consider the following three equations.

$$4\sqrt[3]{3} = \sqrt[3]{x}$$

$$5\sqrt{x} = y\sqrt{3}$$

$$4\sqrt[3]{3} = \sqrt[3]{x}$$
 $5\sqrt{x} = y\sqrt{3}$ $16\sqrt{y} = z\sqrt{10}$

Which of the statements below is correct?
$$\sqrt[3]{x} = 4\sqrt[3]{3} = \sqrt[3]{64}\sqrt[3]{3} = \sqrt[3]{192}$$

$$\mathbf{A.} \quad x < y < z$$

$$\mathbf{B}$$
. $z < x < y$

$$\mathbf{C.} \quad y < z < x$$

A.
$$x < y < z$$
B. $z < x < y$

C. $y < z < x$

D. $z < y < x$
 $y = 5\sqrt{192} = 5\sqrt{64}$
 $z = 16\sqrt{40}$
 $z = 16\sqrt{4}$
 $z = 16\sqrt{2} = 32$
 $z < y < x$
 $z = 192$
 $z = 192$

Written Response - 5 marks

Use the following information to answer the next question.

A group of students have invented a simple card game based on the real number system. 1. There are 50 cards in the deck and each card has a number written on it.

Points are awarded as follows.

Natural Number \rightarrow 4 points

Integer → 6 points

Rational Number → 3 points Non-real Number → 1 point

Whole number \rightarrow 5 points Irrational Number → 10 points

• A student selects a card. The number on the card is 7. Explain why this card is valued at 18 points.

7 is a natural number, a whole number, an integer, and a rational number.

- A second student selects a card which has the number -5 on it. How many points are awarded for this card?
 - 5 is an integer and a rational number.

• In the game each student is dealt three cards and the student with the most points wins.

Which of the following three students wins the game?

Student A with the following cards

$$\frac{3}{4}$$
, $\sqrt{15}$ and 0. $3+10+14=27$

Student B with the following cards

$$-3, \sqrt{\frac{4}{9}}$$
 and π . $9 + 3 + 10 = 22$

Student C with the following cards $-\sqrt{36}$, $\sqrt{-36}$ and 36. 9 + 1 + 18 = 28 C wins

Number:

3 4	V15	0	- 3	$\sqrt{\frac{4}{9}}$	II	$-\sqrt{36}$	√ - 36	36	
Q	Q	W, I, Q	I,Q	Q	Q	I,Q	non-real	N,W,I,Q	1
3	10	5+6+3 : 14	6+3=9	3	10	6+3=9	l	4+5+6+3	7

Points

Answer Key

- 1. D
- 3. B

- 9. C
- 10. A
- 11. A
- 13. B
- 14. C

1.

4.

7	3		
2	0	5	3

2.

5.

8	7	
9	2	

3.

2		- 1
2	1	6

- 1. The number 7 is a natural number, a whole number, an integer, and a rational number. The point value is 4 + 5 + 6 + 3 = 18.
 - The number -5 is an integer, and a rational number. The point value is 6 + 3 = 9.
 - Student A: $3/4 \rightarrow 3$ points, $\sqrt{15} \rightarrow 10$ points, $0 \rightarrow 14$ points, for a total of 27 points.
 - Student B: -3 \rightarrow 9 points, $\sqrt{\frac{4}{9}} \rightarrow$ 3 points, $\pi \rightarrow$ 10 points, for a total of 22 points.
 - Student C: $-\sqrt{36} \rightarrow 9$ points, $\sqrt{-36} \rightarrow 1$ point, $36 \rightarrow 18$ points, for a total of 28 points.

Student C wins the game.