TT 5. Possible Solutions

Foundations and Pre-calculus Mathematics 10 (Pearson), questions 4, 14.a), 14.c), 14.e), 14.g), 15.d), 21.b), 21.d), and 21.f) on pages 166 and 167 (**Note:** The textbook may use a colour scheme for algebra tiles that does not align with the scheme used in the course.)

- **4.** a) $x^2 + 4x + 3 = (x + 3)(x + 1)$
 - **b)** $x^2 + 6x + 8 = (x + 4)(x + 2)$
 - c) $x^2 + 10x + 25 = (x + 5)(x + 5) \text{ or } (x + 5)^2$
 - **d)** $x^2 + 9x + 18 = (x + 6)(x + 3)$
- **14.** a) The product is –20. The sum is 19. The numbers are –1 and 20.

$$b^2 + 19b - 20 = (b - 1) (b + 20)$$

Check:

$$(b-1) (b + 20)= b (b + 20) - 1(b + 20)$$

= $b^2 + 20b - b - 20$
= $b^2 + 19b - 20$

c) The product is -28. The sum is 12. The numbers are 14 and -2.

$$x^2 + 12x - 28 = (x + 14) (x - 2)$$

Check:

$$(x + 14) (x-2) = x (x-2) + 14 (x-2)$$

= $x^2 - 2x + 14x - 28$
= $x^2 + 12x - 28$

e) The product is -20. The sum is -1. The numbers are -5 and 4.

$$a^2 - a - 20 = (a - 5) (a + 4)$$

Check:

$$(a-5) (a+4) = a (a+4) - 5(a+4)$$

= $a^2 + 4a - 5a - 20$
= $a^2 - a - 20$

g) The product is 50. The sum is -15. The numbers are -10 and -5.

$$m^2 - 15m + 50 = (m - 10) (m - 5)$$

Check:

$$(m-10) (m-5) = m (m-5) - 10(m-5)$$

= $m^2 - 5m - 10m + 50$
= $m^2 - 15m + 50$

15. d) Since the z^2 term is negative, use -1 as the common factor.

$$72 - z - z^2 = -1(-72 + z + z^2)$$

Now it is traditional to have the square term first so we re-arrange the expression to get $-1(z^2 + z - 72)$

The product is -72. The sum is 1. The numbers are 9 and -8.

$$z^2 + z - 72 = (z + 9)(z - 8)$$

Therefore, the final answer is

$$-1(z+9)(z-8)$$

Check:
$$-1(z+9)(z-8)$$

$$= -1[z(z-8) + 9(z-8)]$$

$$= -1(z^2 - 8z + 9z - 72)$$

$$= -1(z^2 + z - 72)$$

$$= -z^2 - z + 72 \text{ or } 72 - z - z^2$$

21. b) Take out GCF first:-3 ($m^2 + 6m + 8$). The product is 8. The sum is 6. The numbers are 4 and 2. $-3m^2 - 18m - 24 = -3(m + 4) (m + 2)$

$$-3m^2 - 18m - 24 = -3(m + 4)(m + 2)$$

d) Take out GCF first: $10(x^2 + 8x + 12)$. The product is 12. The sum is 8. The numbers are 6 and 2.

$$10x^2 + 80x + 120 = 10(x + 6)(x + 2)$$

f) Take out GCF first: $7(c^2 - 5c + 6)$. The product is 6. The sum is -5. The numbers are -3 and -2.

$$7c^2 - 35c + 42 = 7 (c - 3) (c - 2)$$