Module 3 Lesson 4:

Math Lab: Factoring $ax^2 + bx + c$ Possible Solutions

Procedure

The completed chart should look like the following.

	<i>x</i> ² -term	<i>x</i> -term	<i>x</i> -term	Constant	Product
(2x+1)(x+2)	2 <i>x</i> ²	4 <i>x</i>	х	2	$2x^2 + 5x + 2$
(2x-3)(x+5)	2 <i>x</i> ²	10 <i>x</i>	-3 <i>x</i>	–15	$2x^2 + 7x - 15$
(3x+4)(2x-1)	6 <i>x</i> ²	-3 <i>x</i>	8 <i>x</i>	-4	$6x^2+5x-4$
(3x-2)(4x-3)	12 <i>x</i> ²	-9 <i>x</i>	-8 <i>x</i>	6	$12x^2 - 17x + 6$

Analysis

1 a.
$$2 \times 2 = 4$$

b. $4 \times 1 = 4$ (The product is identical to the product in 1.a.)

c. 4 + 1 = 5 (The sum is equal to the coefficient of the x-term in the final answer.)

2 and 3. The results for the other rows in the table are similar to those found in the first row. In other words, the product of the coefficient of the x^2 -term and the constant is equal to the product of the two x-terms; and the sum of the two x-terms is equal to the coefficient of the x-term in the final answer.

4. The middle term of a trinomial can be expressed as the sum (or difference) of two *x*-terms.

5. You can group the first two terms and the last two terms; then factor out the GCF; then factor out the binomial that is common to both terms.

6. The completed chart should look like the following.

Product	Sum	Numbers	Check
4	5	4 and 1	$4 \times 1 = 4$ $4 + 1 = 5$

10	7	5 and 2	$5 \times 2 = 10$ 5 + 2 = 7
-6	1	3 and –2	$3 \times (-2) = -6$ 3 + (-2) = 1
20	-9	–5 and –4	(-5) × (-4) = 20 (-5) + (-4) = -9
-12	-4	–6 and 2	$(-6) \times 2 = -12$ (-6) + 2 = -4

^{7.} Answers may vary. Most students will suggest trial and error.