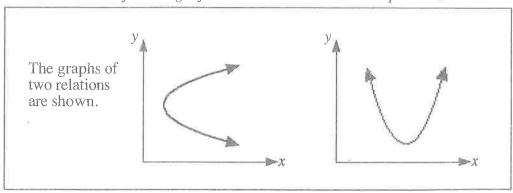
# Module 4 Questions: #1,2,3,NR3,5,9,15) Relations and Functions Lesson #12: Practice Test

- 1. Which of the following variables is discrete?
  - A. The time taken to run 50 metres.
  - **B.** The distance travelled by a train.
  - C. The number of animals in a zoo.
  - D. The weight of a dog.
- 2. Which of the following statements is false?
  - A. The domain of a relation is associated with values of the independent variable.
  - B. The dependent variable is represented by the first coordinate of an ordered pair.
  - C. The inputs of a relation are shown on the horizontal axis of a Cartesian Plane.
  - **D**. The range of a relation is represented on the vertical axis of the graph of the relation.

| irra. | anie | THE | eal |
|-------|------|-----|-----|
|       |      |     |     |
| 10    | \$17 | OF  | isc |


. To the nearest hundredth, the positive x-intercept on the graph of the relation

$$2x^2 + 6y^2 = 7$$
 is .

(Record your answer in the numerical response box from left to right)



Use the following information to answer the next question.



- 3. Which of the following statements is true?
  - **A.** The domains are the same, but the ranges are different.
  - **B.** The ranges are the same, but the domains are different.
  - C. The domains are the same, and the ranges are the same.
  - **D.** The domains are different, and the ranges are different.

The graph of the relation  $4x^2 - 3y = 12$  has x-intercepts a and b, and y-intercept c. The value of the product abc is \_\_\_\_.

(Record your answer in the numerical response box from left to right)

| I | -    |
|---|------|
| 1 |      |
|   |      |
| 1 | <br> |

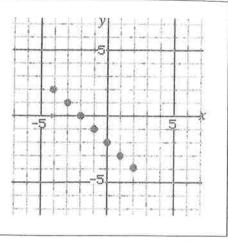
Use the following information to answer the next two questions.

The cost (\$ C) of publishing a school newspaper is partially fixed and partially depends on the number (n) of newspapers printed. The cost is given by the formula C = 98 + 0.12n.

- 4. The cost of publishing 780 newspapers is
  - A. \$191.60
  - **B**. \$773.76
  - C. \$94.58
  - **D.** \$9 458.00

| Numerical             | 3. |
|-----------------------|----|
| Response              |    |
| Carried Second Second | 60 |

The domain of the relation can be expressed in the form  $n \ge x$ , and the range can be expressed in the form  $C \ge y$ . Write the value of y in the first two boxes, and the value of x in the last two boxes.


(Record your answer in the numerical response box from left to right)



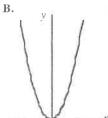
- 5. The function  $f(x) = 3 2x^2$ , has domain  $\{-6, -4, 0, 2, 5\}$ . Which of the following is an element of the range of the function?
  - **A.** 35
  - **B.** 27
  - **C.** 1
  - **D.** -29

Use the following information to answer the next question.

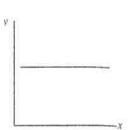
The diagram shows the graph of the function y = f(x).



- The diagram shows the graph of the function y = f(x). The value of f(-2) + f(2) is
  - **A.** -4
  - **B.** -2
  - **C.** 0
  - **D.** f(0)


Use the following information to answer questions #7 and #8.

Consider the function P(x) = 5x + 2.


- 7. The value of P(6) is
  - A.  $\frac{8}{5}$
  - **B.**  $\frac{4}{5}$
  - **C.** 32
  - **D.** 58
- **8.** If P(b) = 6, then b =
  - $\mathbf{A} = \frac{8}{5}$
  - $\mathbf{B}_{\bullet} = \frac{4}{5}$
  - $C_1 = \frac{5}{4}$
  - **D**. 32

Which of the following diagrams shows a relation which is not a function? 9.









- 10. Consider the graph of the function f(x) = 4x 10. The x-intercept of the graph of f is
  - A. -10
  - В. -2.5
  - $\mathbb{C}_{*}$ 2.5
  - $\mathbf{D}_{\bullet}$ 10
- 11. Given a function g defined by g(x) = px + q with g(0) = 2 and g(1) = 3 then
  - **A.** p = 1, q = 0
  - **B.** p = 3, q = 2
  - C. p = 1, q = 2
  - **D.** p = 3, q = 0
- 12. If  $f(x) = 3^x$  and  $f(-a) = \frac{1}{81}$ , then a =
  - A.
- 13. If  $g(x) = \frac{2}{3}x + 6$ , an expression for g(2x 1) is

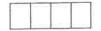
  - **A.**  $\frac{4}{3}x + 5$  **B.**  $\frac{4}{3}x + \frac{16}{3}$  **C.**  $\frac{4}{3}x + 11$  **D**  $\frac{8}{3}x + 5$

- 14. Consider the following functions:
  - **1.**  $p(x) = x^2 4x 2$  **2.**  $p(x) = \frac{1}{3}x + 14$  **3.**  $p(x) = 3x^2 + x$  **4.** p(x) = 7 5x

For each function evaluate p(-3), and put the expressions in order from greatest to least. The order is

- A. 4312
- В. 3412
- C. 3124
- D. none of the above




If  $f(x) = 1 - 2x - 5x^2$ , and if f(x + 2) is written in the form  $ax^2 + bx + c$ , the value of a - b - c is \_\_\_\_\_\_.

(Record your answer in the numerical response box from left to right)



 $f(a) = \frac{a}{a+4}$ . The exact value of  $f(5) - f(5^{-1})$  written as a rational number in simplest form is  $\frac{p}{q}$ . The value of p is \_\_\_\_\_.

(Record your answer in the numerical response box from left to right)



- 15. Which of the following cannot be used to represent a function?
  - A. Graph
  - Table of Values В.
  - C. Ordered Pairs
  - D. Coordinate

### Written Response - 5 marks

- During an airshow, the path of a stunt dive of a jet can be modelled by the equation  $h = t^2 9t + 81$ , where h is the height in metres after t seconds. The end of the stunt occurs when the plane achieves its starting height.
  - How high is the jet at the start of the dive?
  - How high is the jet above ground level at its lowest point?
  - When does the jet reach its lowest point in the dive?
  - How high is the jet two seconds into its dive?
  - After how many seconds does this height occur again within the jet's stunt dive?

### Assignment Key

1. C 2. B 3. D 4. A 5. D 6. A 7. C 8. B

9. C 10. C 11. C 12. A 13. B 14. B 15. D

1. 1 . 8 7 2. 1 2 3. 9 8 0 0

**4.** 4 0 **5.** 3 2

#### Written Response

1. • 81 m

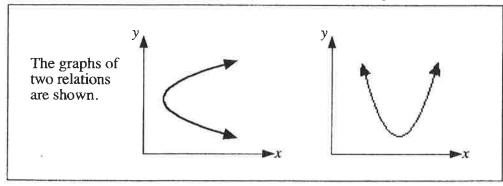
- 60.75 m
- 4.5 sec
- 67 m
- 7 sec

## Relations and Functions Lesson #12: Practice Test

- 1. Which of the following variables is discrete?
  - A. The time taken to run 50 metres.
  - B. The distance travelled by a train.
  - The number of animals in a zoo.
  - **D.** The weight of a dog.
- 2. Which of the following statements is false?
  - A. The domain of a relation is associated with values of the independent variable.
  - (B) The dependent variable is represented by the first coordinate of an ordered pair.
  - C. The inputs of a relation are shown on the horizontal axis of a Cartesian Plane.
  - **D.** The range of a relation is represented on the vertical axis of the graph of the relation.



To the nearest hundredth, the positive x-intercept on the graph of the relation


$$2x^2 + 6y^2 = 7$$
 is \_\_\_\_\_.

(Record your answer in the numerical response box from left to right)

$$x^2 = \frac{7}{2}$$

$$x = \sqrt{\frac{7}{3}} = 1.87$$

Use the following information to answer the next question.



- 3. Which of the following statements is true?
  - A. The domains are the same, but the ranges are different.
  - B. The ranges are the same, but the domains are different.
  - C. The domains are the same, and the ranges are the same.
  - D. The domains are different, and the ranges are different.

The graph of the relation  $4x^2 - 3y = 12$  has x-intercepts a and b, and y-intercept c. The value of the product abc is \_\_\_\_\_.

(Record your answer in the numerical response box from left to right)

$$\frac{x - \text{intercepts}}{y = 0}$$

$$4 = 0$$

$$4 = 12$$

$$x^{2} = 3$$

$$x = \pm \sqrt{3}$$

$$x = \pm \sqrt{3}$$

$$y = -4$$

$$3 = 0$$

$$3 = 12$$

$$-3 = 12$$

$$3 = -3$$

$$y = -4$$

Use the following information to answer the next two questions.

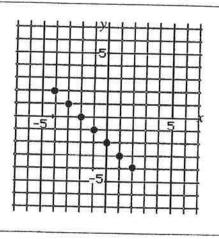
The cost (\$ C) of publishing a school newspaper is partially fixed and partially depends on the number (n) of newspapers printed. The cost is given by the formula C = 98 + 0.12n.

The cost of publishing 780 newspapers is 4.



The domain of the relation can be expressed in the form  $n \ge x$ , and the range can be expressed in the form  $C \ge y$ . Write the value of y in the first two boxes, and the value of x in the last two boxes.

(Record your answer in the numerical response box from left to right)




The function  $f(x) = 3 - 2x^2$ , has domain  $\{-6, -4, 0, 2, 5\}$ . Which of the following is an element of the range of the function?

$$3-2(-6)^2=-69$$
  $3-2(2)^2=-5$ 

$$3-2(1)^{2}=-5$$

The diagram shows the graph of the function y = f(x).



The diagram shows the graph of the function y = f(x). The value of f(-2) + f(2) is 6.

$$\mathsf{t}(-z)=0$$

$$t(-3) = 0$$
  $t(3) = -7$ 

$$\mathbf{C}$$
. 0

Use the following information to answer questions #7 and #8.

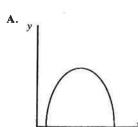
Consider the function P(x) = 5x + 2.

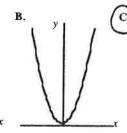
7. The value of P(6) is

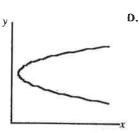
A. 
$$\frac{8}{5}$$

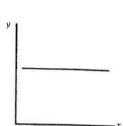
**B.** 
$$\frac{4}{5}$$

$$\mathbf{B}. \quad \frac{3}{5}$$


If P(b) = 6, then b =8.


A. 
$$\frac{8}{5}$$


$$\mathbf{C}_{\bullet} = \frac{5}{4}$$


$$b = \frac{4}{5}$$

Which of the following diagrams shows a relation which is not a function? 9.









10. Consider the graph of the function f(x) = 4x - 10. The x-intercept of the graph of f is

$$\frac{x_{int}}{x_{int}}$$
  $f(x) = 0$   $0 = 4x - 10$ 

- - Given a function g defined by g(x) = px + q with g(0) = 2 and g(1) = 3 then

**A.** 
$$p = 1, q = 0$$

$$2 = (p)(0) + 9$$

**B.** 
$$p = 3, q = 2$$

$$3 = (p)(1) + 9$$

A. 
$$p = 1$$
,  $q = 0$   
B.  $p = 3$ ,  $q = 2$   
C.  $p = 1$ ,  $q = 2$   
D.  $p = 3$ ,  $q = 0$ 

$$2 = (p)(0) + q$$

$$p + q = 3$$

$$p + 2 = 3$$

$$p + 2 = 3$$

$$p + 2 = 3$$

12. If 
$$f(x) = 3^x$$
 and  $f(-a) = \frac{1}{81}$ , then  $a =$ 

$$\begin{array}{ccc} A. & 4 \\ B. & -4 \\ C. & -\frac{1}{4} \\ \end{array}$$

$$\frac{1}{3a} = \frac{1}{81}$$

**D.** 
$$\frac{1}{4}$$

$$\frac{1}{3^a} = \frac{1}{81}$$

13. If 
$$g(x) = \frac{2}{3}x + 6$$
, an expression for  $g(2x - 1)$  is

$$\mathbf{A.} \quad \frac{4}{3}x + 5$$

$$g(2x-1) = \frac{2}{3}(2x-1) + 6$$

(B.) 
$$\frac{4}{3}x + \frac{16}{3}$$
  
C.  $\frac{4}{3}x + 11$ 

$$=\frac{4}{3}\times -\frac{2}{3}+6$$

C. 
$$\frac{4}{3}x + 11$$

$$=\frac{4}{3}x+\frac{16}{3}$$

**D** 
$$\frac{8}{3}x + 5$$

14. Consider the following functions:

**1.** 
$$p(x) = x^2 - 4x - 2$$
 **2.**  $p(x) = \frac{1}{3}x + 14$  **3.**  $p(x) = 3x^2 + x$  **4.**  $p(x) = 7 - 5x$ 

2. 
$$p(x) = \frac{1}{3}x + 14$$

3. 
$$p(x) = 3x^2 + x$$

**4.** 
$$p(x) = 7 - 5x$$

For each function evaluate p(-3), and put the expressions in order from greatest to least. The order is

1. 
$$p(-3) = (-3)^2 - 4(-3) - 2 = 19$$

2. 
$$p(-3) = \frac{1}{3}(-3) + 14 = 13$$

none of the above 3. 
$$p(-3) = 3(-3)^2 + (-3) = 24$$

4. 
$$p(-3) = 7 - 5(-3) = 22$$



If  $f(x) = 1 - 2x - 5x^2$ , and if f(x + 2) is written in the form  $ax^2 + bx + c$ , the value of a - b - c is \_\_\_\_\_.

(Record your answer in the numerical response box from left to right)



$$f(x+2) = 1-2(x+2)-5(x+2)^{2}$$

$$= 1-2x-4-5(x^{2}+4x+4) \qquad a = -5$$

$$= 1-2x-4-5x^{2}-20x-20 \qquad b = -22$$

$$= -5x^{2}-22x-23$$

$$a - b - c$$

$$= -5 - (-21) - (-23)$$

$$= 40$$

 $f(a) = \frac{a}{a+4}$ . The exact value of  $f(5) - f(5^{-1})$  written as a rational number in simplest form is  $\frac{p}{q}$ . The value of p is \_\_\_\_\_.

(Record your answer in the numerical response box from left to right)

(Record your answer in the numerical response box from left to right)
$$f(5) = \frac{5}{5+4} = \frac{5}{9} \qquad f(5^{-1}) = \frac{5^{-1}}{5^{-1}+4} = \frac{1}{5} = \frac{1}{21}$$

$$\frac{5}{9} = \frac{1}{21} = \frac{32}{63}$$

$$\frac{5}{9} - \frac{1}{21} = \frac{32}{63}$$

$$p = 32$$

Which of the following cannot be used to represent a function?

- A. Graph
- В. Table of Values
- Ordered Pairs
- Coordinate

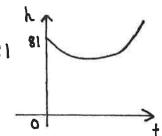
### Written Response - 5 marks

- During an airshow, the path of a stunt dive of a jet can be modelled by the 1. equation  $h = t^2 - 9t + 81$ , where h is the height in metres after t seconds. The end of the stunt occurs when the plane achieves its starting height.
  - How high is the jet at the start of the dive?

81 m

• How high is the jet above ground level at its lowest point?

• When does the jet reach its lowest point in the dive?


After

• How high is the jet two seconds into its dive?

$$x = \lambda$$

67 m

After how many seconds does this height occur again within the jet's stunt dive?



graph y = 67 "intersect"

7 seconds

### Assignment Key

- 1. C 2. B
- 3. D
- 4. A 5. D
- 6. A
- 7. C 8. B

- 9. C
- 10. C
- 11. C
- 12. A 13. B
- 14. B
- 15. D

- 2. 2
- 3.

- 0

### Written Response

- 1. 81 m
  - 60.75 m
  - 4.5 sec.
  - 67 m
  - 7 sec.