Module 5 Lesson 5

Share 1 – 4 Possible Solutions

1. To find two integral points on the graph of 5x + 3y - 8 = 0, examine the differences between multiples of the coefficient of the *x*-term and the constant. Look for a difference that is divisible by the coefficient of the *y*-term. For example,

x	5 <i>x</i>	5 <i>x</i> – 8	Divisible by 3?
1	5	-3	yes
2	10	2	no
3	15	7	no
4	20	12	yes

Choose the values of *x* that would result in a difference (between the *x*-term and the constant) that is divisible by the coefficient of the *y*-term.

Substitute x = 1.

$$5x+3y-8=0$$

$$5(1)+3y-8=0$$

$$5+3y-8=0$$

$$3y-3=0$$

$$3y=3$$

$$y=1$$

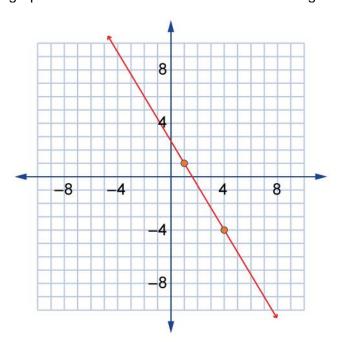
Therefore, one point on the graph is 1,1.

Substitute x = 4.

$$5x+3y-8=0$$

$$5(4)+3y-8=0$$

$$20+3y-8=0$$


$$3y+12=0$$

$$3y=-12$$

$$y=-4$$

Therefore, another point on the graph is 4, -4.

The graph can be sketched to look like the following.

The following are sample answers.

- 2. Integer coordinates can be plotted more accurately than coordinates expressed as decimals or fractions.
- 3. Some graphing display technology allows a person to enter the equation, and then the person can access a corresponding table of values. This table can be examined for integral points.
- 4. Recall that you can graph a line by knowing its slope and a single point. Therefore, the equation of the line can be rearranged into slope-intercept form to find the slope. Then apply the slope to the point that was previously determined.