Module 5 Lesson 5

Math Lab: Analyzing General Form Possible Solutions

Part A

1. The completed chart should look like the following.

General Form	Slope-Intercept Form	Slope	<i>y</i> -intercept
2x+3y+6=0	2x + 3y + 6 = 0 3y = -2x - 6	$\frac{-2}{3}$	$-\frac{6}{3}$
	$3y = -2x - 6$ $\frac{3y}{3} = \frac{-2x}{3} + \frac{-6}{3}$		G
	$3 3 3 y = \frac{-2}{3}x + \frac{-6}{3}$		
	$y = \frac{1}{3}x + \frac{1}{3}$		
3x + 4y - 12 = 0	3x+4y-12=0	$\frac{-3}{4}$	$\frac{12}{4}$
	4y = -3x + 12	7	7
	$\frac{4y}{4} = \frac{-3x}{4} + \frac{12}{4}$		
	$y=\frac{-3x}{4}+\frac{12}{4}$		
9x - 3y + 12 = 0	9x - 3y + 12 = 0	$\frac{-9}{-3}$	$\frac{-12}{-3}$
	-3y = -9x - 12	-3	-3
	$\frac{-3y}{-3} = \frac{-9x}{-3} + \frac{-12}{-3}$		
	$y = \frac{-9x}{-3} + \frac{-12}{-3}$		
5x - 2y - 10 = 0	5x - 2y - 10 = 0	$\frac{-5}{-2}$	10 -2
	-2y = -5x + 10	-2	-2
	$\frac{-2y}{-2} = \frac{-5x}{-2} + \frac{10}{-2}$		
	$y = \frac{-5x}{-2} + \frac{10}{-2}$		

Analysis

- 2. Coefficients A and B in general form are used to determine the slope of the linear function.
- 3. Coefficients *C* and *B* in general form are used to determine the *y*-intercept of the linear function.
- 4. The slope $= -\frac{A}{B}$, and the *y*-intercept $= -\frac{C}{B}$.

Part B

- 5. a. The *y*-intercept could be found using one of two methods:
 - All *y*-intercepts have an *x*-coordinate equal to zero. Therefore, substitute x = 0 into the equation and solve for *y*.
 - Rearrange the equation into slope-intercept form y = mx + b. The constant b is the v-intercept.
 - b. The *x*-intercept could be found using one of two methods:
 - All *x*-intercepts have a *y*-coordinate equal to zero. Therefore, substitute y = 0 into the equation and solve for *x*.
 - Isolate x. Just as the constant is the y-intercept when in slope-intercept form, so too does the constant when x is isolated represent the x-intercept.
 - c. Possible answers include the following.

To find the *y*-intercept, substitute x = 0.

$$2x+3y-6=0$$

$$2(0)+3y-6=0$$

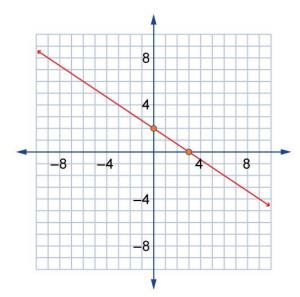
$$3y-6=0$$

$$3y=6$$

$$y=2$$

To find the *x*-intercept, substitute y = 0.

$$2x+3y-6=0$$


$$2x+3(0)-6=0$$

$$2x-6=0$$

$$2x=6$$

$$x=3$$

d. Plot the *x*-intercept and the *y*-intercept. Then draw a line through the points.

