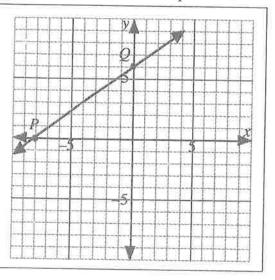
Module 5 Questions; #1,2,3,5,6,7, NR1, 10, NR4, NR5)

Equations of Linear Relations Lesson #8: Practice Test


- 1. The slope of the line with equation 3y = 2x 12 is
 - A. 2
 - В.
 - C. -4
 - D. -12
- 2. The y-intercept of the graph of the line with equation y = 5x 10 is
 - 2 A.
 - В. 5
 - C. 10
 - **D**. -10
- 3. Which equation represents a line with a slope of 3 and a y-intercept of -4?
 - **A.** y = -4x + 3
 - **B.** $y = -\frac{1}{3}x 4$
 - C_{\bullet} y = 3x 4
 - D. y = 3x + 4
- **4.** Which of the following is the equation of a line perpendicular to 5y + x + 6 = 0?
 - $A \cdot y = 5x$
 - \mathbf{B}_* y = x
 - $\mathbb{C}_* \quad y = \frac{1}{5}x$
 - $\mathbf{D}_{+} \quad y = -\frac{1}{5}x$
- 5. Which of these ordered pairs can be found on the graph of the line 3x 5y 4 = 0?
 - i) (8,4)
- (-3, 1)
- iii) (0, -0.8) iv) (-2, 2)

- \mathbf{A}_{\bullet} i) and ii) only
- В. i) and iii) only
- C. i), ii), and iii) only
- some other combination of i), ii), iii), and iv) D.

- **6.** The point of intersection of the line 9x 3y + 9 = 0 and the y-axis is
 - A. (0,9)
 - В. (0,3)
 - C. (0, -1)
 - D. (0, -3)

Use the following information to answer the next two questions.

The x- and y-intercepts of the graph shown are integers.

- 7. The equation of the line PQ is
 - **A.** 3x + 4y + 24 = 0
 - **B.** 3x + 4y + 32 = 0
 - C. 3x 4y + 24 = 0
 - **D.** 3x 4y + 32 = 0

Response

Numerical 1. Given that the line above passes through (7.2, k), the value of k, to the nearest tenth, is _____.

		- 1	
- 1	- 0	- 1	- 4
- 1	- 11:	- 11	- 1
- 1	- 11	- 1	- 1

8.	If the lines	ax + by + c = 0	and	dx + ey + f = 0	are parallel,	then
8.	If the lines	ax + by + c = 0	and	ax + ey + j = 0	are paramer	,

$$\mathbf{A.} \quad ae - bd = 0$$

$$\mathbf{B.} \quad ae + bd = 0$$

$$\mathbf{C}$$
. $ad - be = 0$

D.
$$ad + be = 0$$

Given that the line joining the points (2,3) and (8,-q), where $q \in W$, is perpendicular to the line 3x - 2y - 5 = 0, then the value of q is _____.

(Record your answer in the numerical response box from left to right)

1		1 1	
1	1 -	-	

The equations of four straight lines are 9.

1)
$$7x - y = 0$$

2)
$$7x + y - 6 = 0$$

3)
$$x - 7y + 4 = 0$$

3)
$$x - 7y + 4 = 0$$
 4) $x + 7y - 2 = 0$

Which pairs of lines are perpendicular?

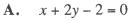
The line passing through the points (-5, -2) and (-2, -1) has equation **10.**

A.
$$x + y + 3 = 0$$

B.
$$x + 3y + 5 = 0$$

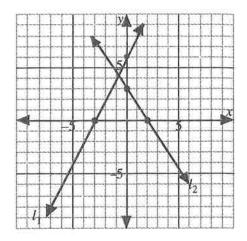
C.
$$x - 3y + 1 = 0$$

D.
$$x - 3y - 1 = 0$$

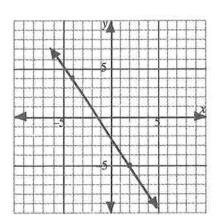


The lines 3x - y + 2 = 0 and 5x - By + 26 = 0, where $B \in W$, intersect on the y-axis.

The value of B is $_{---}$.


11. Which equation represents a line which is perpendicular to line l_1 and has the same x-intercept as line l_2 ?

B.
$$x + 2y + 2 = 0$$


C.
$$2x + y - 4 = 0$$

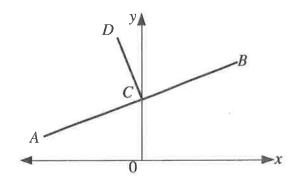
D.
$$2x + y + 4 = 0$$

Response

Numerical 4. The equation of the line shown in the diagram is Ax + 2y + C = 0. The value of $\frac{A}{C}$, to the nearest hundredth, is _____.

(Record your answer in the numerical response box from left to right)

12. The equation of AB is x - 2y + 4 = 0. AB cuts the y-axis at C. CD is perpendicular to AB.


The equation of CD is

A.
$$x + 2y - 2 = 0$$

B.
$$2x + y - 2 = 0$$

C.
$$2x - y + 2 = 0$$

D.
$$2x + y - 4 = 0$$

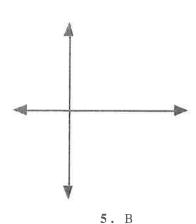
- 13. Consider $\triangle PQR$ in which side PQ has slope $\frac{1}{3}$ and R has coordinates (-4, 7). The equation of the altitude from R to PQ (the line drawn from R to PQ, perpendicular to PQ), is
 - x + 3y = 25
 - В. 3x + y = 19
 - 3x + y = -5C.
 - D. 3x + y = -19
- Which of the following lines is/are perpendicular to the line 9x + y + 2 = 0? 14.

- i) 9y + x = 2 ii) 9y x = 2 iii) y = 9x + 2 iv) 9y = x 2
- i) and iii) only
- **B**. ii) only
- C. iv) only
- some other combination of i), ii), iii), and iv) D.
- The line l_1 passes through the points (-3, 5) and (-2, -1).

Which of the following statements is true?

- l_1 passes through (4, -37). ii) l_1 has an x-intercept of $-\frac{13}{6}$.
- l_1 is perpendicular to $y = \frac{1}{6}x + 2$.
- A. i) and ii) only
- В. i) and iii) only
- C. ii) and iii) only
- D. i), ii), and iii)

Numerical 5. The temperature at sea level is 12.1 °C. At the top of a mountain, 6 400 m above sea level, the temperature is -29.5 °C. To the nearest tenth, the rate of temperature decrease, in °C per km, is _____.


Written Response - 5 marks

- 1. Consider the points P(-7, -2), Q(2, 1), R(-2, -7), and S(8, 3).
 - Show that the equation of the line, L_1 , through S and perpendicular to PQ is y = -3x + 27.

• Determine the equation of the line, L_2 , through R and parallel to PQ. Give the answer in in slope y-intercept form.

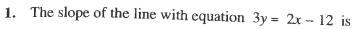
• Draw both lines on the grid, and state a suitable window which shows *x*- and *y*-intercepts for each graph.

NR 5.

Answer Key

1. B			2. D)
6 . B			7. C	
11. A			12. H	3
NR 1.	1	1	70	4
NR 4.	0	9	7	5

)		10. D 15. D			
NR	3.	1	3		


Written Response

•
$$y = -3x + 27$$

•
$$y = \frac{1}{3}x - \frac{19}{3}$$

• x:[-5, 25, 5] and y:[-10, 35, 5]

Equations of Linear Relations Lesson #8: Practice Test

$$y = \frac{2}{3}x - 4$$

B.
$$\frac{2}{3}$$

2. The y-intercept of the graph of the line with equation y = 5x - 10 is

$$(D)$$
 -10

3. Which equation represents a line with a slope of 3 and a y-intercept of -4?

A.
$$y = -4x + 3$$

B.
$$y = -\frac{1}{3}x - 4$$

C) $y = 3x - 4$
D. $y = 3x + 4$

(C)
$$y = 3x - 4$$

D.
$$y = 3x + 4$$

4. Which of the following is the equation of a line perpendicular to 5y + x + 6 = 0?

$$A. y = 5x$$

$$\mathbf{B}. \quad \mathbf{y} = \mathbf{x}$$

A)
$$y = 5x$$

B. $y = x$
C. $y = \frac{1}{5}x$
5y = -x - 6
y = $-\frac{1}{5}x - \frac{6}{5}$
slope = $-\frac{1}{5}$

$$\mathbf{C}, \quad y = \frac{1}{5}x$$

slope =
$$-\frac{1}{5}$$

D.
$$y = -\frac{1}{5}x$$

D.
$$y = -\frac{1}{5}x$$
 perpendicular slope: 5

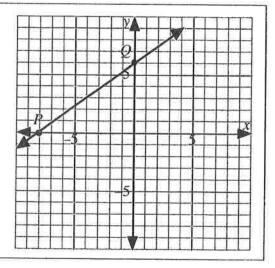
5. Which of these ordered pairs can be found on the graph of the line 3x - 5y - 4 = 0?

- i) (8,4)
- ii) (-3, 1)
- iii) (0, -0.8) iv) (-2, 2)

- i) and ii) only i) 3(8) 5(4) 4 = 0 ii) $3(-3) 5(1) 4 = -18 \times 10^{-2}$
- i) and iii) only
- $\sin(3(0)-5(-0.8)-4=0$ iv) 3(-2)-5(2)-4=-20 ×
- i), ii), and iii) only
- some other combination of i), ii), iii), and iv) D.

6. The point of intersection of the line 9x - 3y + 9 = 0 and the y-axis is

B.
$$(0,3)$$


$$C.$$
 (0, -1)

$$\mathbf{D}$$
 (0, -3)

(0, 3)

Use the following information to answer the next two questions.

The x- and y-intercepts of the graph shown are integers.

7. The equation of the line PQ is

A.
$$3x + 4y + 24 = 0$$
 P(-8 o)

B.
$$3x + 4y + 32 = 0$$

A.
$$3x + 4y + 24 = 0$$
 $\rho(-8, 0)$
B. $3x + 4y + 32 = 0$
C. $3x - 4y + 24 = 0$ $Q(0, 6)$
 $3x - 4y + 32 = 0$ $\rho(-8, 0)$
 $y = mx + b$
 $y = -2x + 6$

$$m_{PQ} = \frac{6-0}{0+8} = \frac{6}{8} = \frac{3}{4}$$

$$0 = 3x - 45 + 24$$

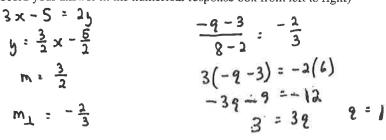
Response

Numerical 1. Given that the line above passes through (7.2, k), the value of k, to the nearest tenth,

$$3(7.2) - 4k + 24 = 0$$

 $21.6 + 24 = 4k$

8. If the lines
$$ax + by + c = 0$$
 and $dx + ey + f = 0$ are parallel, then


A.
$$ae - bd = 0$$

B. $ae + bd = 0$
C. $ad - be = 0$
by = -ax - c
by = -dx - f
e y = -dx - f

$$-\frac{a}{b} = -\frac{d}{e} - ae = -bd$$

$$O = ae - bd = 0$$

Given that the line joining the points (2,3) and (8,-q), where $q \in W$, is perpendicular to the line 3x - 2y - 5 = 0, then the value of q is _____.

(Record your answer in the numerical response box from left to right)

The equations of four straight lines are 9.

1)
$$7x - y = 0$$

ad + be = 0

D.

2)
$$7x + y - 6 = 0$$

3)
$$x - 7y + 4 = 0$$

3)
$$x - 7y + 4 = 0$$
 4) $x + 7y - 2 = 0$

Which pairs of lines are perpendicular?

Which pairs of lines are perpendicular?

1)
$$7x = y$$
 $y = 7x$

A. 1) and 2) only

2) $y = 7x + 6$

1)
$$7x = y$$
 $y = 7x$ $m = 7$
2) $y = -7x + 6$ $m = -7$
3) $x + 4 = 7y$ $y = \frac{1}{7}x + \frac{4}{7}$ $m = \frac{1}{7}$

4)
$$7h = -3x - 2$$
 $h = -\frac{1}{7}x - \frac{2}{7}$ $m = -\frac{1}{7}$

The line passing through the points (-5, -2) and (-2, -1) has equation

A.
$$x + y + 3 = 0$$
 $m = \frac{-1+2}{-2+5} = \frac{1}{3}$

and

B.
$$x + 3y + 5 = 0$$

$$u + 1 = \frac{1}{3}(x+2)$$

$$0 = x - 35 - 1$$

(D)
$$x - 3y - 1 = 0$$

C.
$$x - 3y + 1 = 0$$

D. $x - 3y - 1 = 0$
 $x - 3y - 1 = 0$
 $y + 1 = \frac{1}{3}(x + 2)$
 $3(y+1) = x + 2$

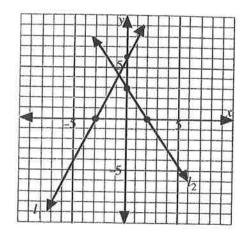
Response

Numerical 3. The lines 3x - y + 2 = 0 and 5x - By + 26 = 0, where $B \in W$, intersect on the y-axis. The value of B is _____.

11. Which equation represents a line which is perpendicular to line l_1 and has the same x-intercept as line l_2 ?

$$\begin{array}{ll} \textbf{A.} & x + 2y - 2 = 0 \\ \textbf{B.} & x + 2y + 2 = 0 \end{array}$$

C.
$$2x + y - 4 = 0$$


$$D. 2x + y + 4 = 0$$

$$m_{\perp} = -\frac{1}{2}$$

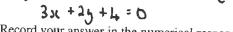
$$m = -\frac{1}{2}$$
 point (2,0)

$$y - 0 = -\frac{1}{2}(x-2)$$

$$25 = -(x-2)$$

Response

Numerical 4. The equation of the line shown in the diagram is Ax + 2y + C = 0. The value of $\frac{A}{C}$, to the nearest hundredth, is


$$M = \frac{Pile}{Chn} = \frac{q}{-6} = -\frac{3}{2}$$
 point (2,-5)

$$y + 5 = -\frac{3}{2}(x-2)$$

$$2(y+5) = -3(x-2)$$

$$\lambda(y+5) = -3(x-2)$$
 $\lambda(y+5) = -3x+6$
 $\lambda(y+5) = -3x+6$

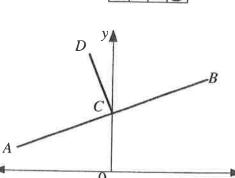
$$\frac{A}{C} = \frac{3}{4} = 0.75$$

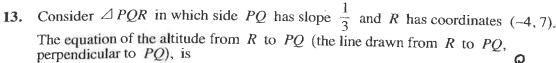
- (Record your answer in the numerical response box from left to right)
- 12. The equation of AB is x 2y + 4 = 0. AB cuts the y-axis at C.
 - CD is perpendicular to AB. x+4=25

The equation of *CD* is

A.
$$x + 2y - 2 = 0$$

B.
$$2x + y - 2 = 0$$

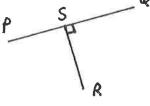

$$C$$
. $2x - y + 2 = 0$


D.
$$2x + y - 4 = 0$$

$$m_{AB} = \frac{1}{2}$$
 $m_{CD} = -2$

B)
$$2x + y - 2 = 0$$

C. $2x - y + 2 = 0$
D. $2x + y - 4 = 0$
C(0,1)
y-1 = -2(x-0)



A.
$$x + 3y = 25$$

B.
$$3x + y = 19$$

(C)
$$3x + y = -5$$

D.
$$3x + y = -19$$

A. x + 3y = 25B. 3x + y = 19C. 3x + y = -5D. 3x + y = -19 3x + y = -19 3x + y = -5 3x + y + 5 = 0 3x + y = -514. Which of the following lines is/are perpendicular to the line 9x + y + 2 = 0? y = -9x - 2

i)
$$9y + x = 2$$

ii)
$$9y - x = 2$$

iii)
$$y = 9x + 2$$

i)
$$9y + x = 2$$
 ii) $9y - x = 2$ iii) $y = 9x + 2$ iv) $9y = x - 2$

$$m = \frac{1}{9}$$

i) and iii) only
i)
$$9y = -x + 2$$
ii) $9y = x + 2$
iii) $m = 9$
iv) $y = \frac{1}{9}x - \frac{2}{9}$
iv) only
$$y = -\frac{1}{9}x + \frac{2}{9}$$

$$y = \frac{1}{9}x + \frac{2}{9}$$
iv) only
$$m = \frac{1}{9}$$
some other combination of i), ii), iii), and iv)
ii) and iv) are perpendicular

15. The line l_1 passes through the points (-3, 5) and (-2, -1).

Which of the following statements is true?

i)
$$l_1$$
 passes through $(4, -37)$

$$l_1$$
 passes through (4, -37).
 ii) l_1 has an x-intercept of $-\frac{13}{6}$.

iii)
$$l_1$$
 is perpendicular to $y = \frac{1}{6}x + 2$

iii)
$$l_1$$
 is perpendicular to $y = \frac{1}{6}x + 2$. $m = \frac{-1-5}{-2+3}$: $-6 \quad y+1 = -6(x+2)$

A. i) and ii) only

B. i) and iii) only

C. ii) and iii) only

i) Ls: -37 Rs: -4(4) -13

= -37

 $y+1 = -6x - 12$
 $y=-6x - 13$

C. ii) and iii) only

ii) $0 = -6x - 13$

iii) $0 = -6x - 13$

$$6x = -13 \times = -\frac{13}{6}$$

Response

Numerical 5. The temperature at sea level is 12.1 °C. At the top of a mountain, 6 400 m above sea level, the temperature is -29.5 °C. To the nearest tenth, the rate of temperature decrease, in °C per km, is _____

Written Response - 5 marks

1. Consider the points P(-7, -2), Q(2, 1), R(-2, -7), and S(8, 3).

• Show that the equation of the line,
$$L_1$$
, through S and perpendicular to PQ is $y = -3x + 27$.

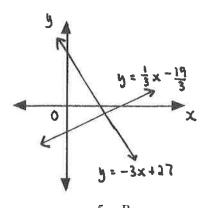
$$M_{PQ} = \frac{1+\lambda}{2+7} = \frac{3}{9} = \frac{1}{3}$$

$$y - 3 = -3(x - 8)$$

$$y - 3 = -3x + 24$$

$$y = -3x + 27$$

• Determine the equation of the line, L_2 , through R and parallel to PQ. Give the answer in in slope y-intercept form.


$$m_{pq} = \frac{1+2}{2+7} = \frac{3}{9} = \frac{1}{3}$$

$$y + 7 = \frac{1}{3}(x+2)$$

$$y = \frac{1}{3} x + \frac{2}{3} - 7$$

$$y = \frac{1}{3} \times -\frac{19}{3}$$

• Draw both lines on the grid, and state a suitable window which shows x- and y-intercepts for each graph.

Answer Key

1.	В	
6.	В	

11. A

NR 1.

NR 4.

2. D 7. C

12.B

3	C
o	A

9. C 13. C 14. D

NR	2.	1			NR
		_	_	 	-

3

	15.	D
1	3	

10. D

Written Response

•
$$y = -3x + 27$$

•
$$y = \frac{1}{3}x - \frac{19}{3}$$

•
$$x:[-5, 25, 5]$$
 and $y:[-10, 35, 5]$