## Module 6 Lesson 3

## **Try This 5 Possible Solutions**

- **TT 5.a.** Foundations and Pre-calculus Mathematics 10 (Pearson), questions 5, 6, 8.a), 8.b), 9.b), 9.c), and 17 on pages 349 and 350
  - 5. a) The slopes are the same, so the lines are parallel.
    - **b)** The slopes are not the same or negative reciprocals of each other, so they are neither parallel nor perpendicular.
    - c) The slopes are not the same or negative reciprocals of each other, so they are neither parallel nor perpendicular.
    - **d)** The slopes are negative reciprocals of each other (multiply to -1), so the lines are perpendicular.
  - **6.** a) parallel slope:  $-\frac{4}{9}$ ; perpendicular slope:  $\frac{9}{4}$ 
    - **b)** parallel slope: 5; perpendicular slope:  $-\frac{1}{5}$
    - c) parallel slope:  $\frac{7}{3}$ ; perpendicular slope:  $-\frac{3}{7}$
    - **d)** parallel slope: -4; perpendicular slope:  $\frac{1}{4}$
  - **8.** a) i) A(-5, -2), B(1, 5) and C(-1, -4), D(4, 1)

slope 
$$AB = \frac{y_2 - y_1}{x_2 - x_1}$$
  
=  $\frac{5 - (-2)}{1 - (-5)}$   
=  $\frac{7}{6}$ 

slope 
$$CD = \frac{y_2 - y_1}{x_2 - x_1}$$
  
=  $\frac{1 - (-4)}{4 - (-1)}$   
=  $\frac{5}{5}$   
= 1

**ii)** The slopes are not the same or negative reciprocals of each other, so they are neither parallel nor perpendicular.

**b)** i) 
$$E(-3, 4), F(3, 2)$$
 and  $G(2, 5), H(0, -1)$ 

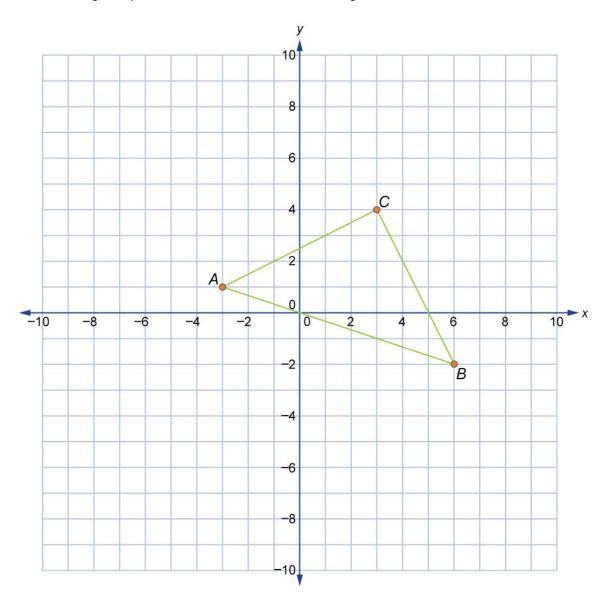
slope 
$$EF = \frac{y_2 - y_1}{x_2 - x_1}$$
  
=  $\frac{2 - 4}{3 - (-3)}$   
=  $\frac{-2}{6}$   
=  $-\frac{1}{3}$ 

slope 
$$GH = \frac{y_2 - y_1}{x_2 - x_1}$$
  
=  $\frac{-1 - 5}{0 - 2}$   
=  $\frac{-6}{-2}$   
= 3

- ii) The slopes are the negative reciprocals, so the lines are perpendicular.
- **9.** Determine the slopes of each line segment. Compare the slopes to determine whether the segments are parallel, perpendicular, or neither.
  - **b)** Since the slopes of *BC* and *DE* are equal, the line segments are parallel.

slope 
$$BC = \frac{y_2 - y_1}{x_2 - x_1}$$
 slope  $DE = \frac{y_2 - y_1}{x_2 - x_1}$  
$$= \frac{3 - -2}{-3 - -6}$$
 
$$= \frac{5}{3}$$
 
$$= \frac{5}{3}$$

**c)** The slopes of *NP* and *QR* are neither equal nor are they negative reciprocals. The segments are neither parallel nor perpendicular.


slope 
$$NP = \frac{y_2 - y_1}{x_2 - x_1}$$
 slope  $QR = \frac{y_2 - y_1}{x_2 - x_1}$ 

$$= \frac{-4 - 2}{-3 - -6}$$

$$= \frac{-6}{3}$$

$$= -2$$

**17.** The following is a possible solution. Sketch the triangle.



Use the graph to determine the slope of each side:

slope of 
$$AB = -\frac{3}{9}$$
  
=  $-\frac{1}{3}$ 

slope of 
$$BC = -\frac{6}{3}$$
  
= -2

slope of 
$$AC = \frac{3}{6}$$
$$= \frac{1}{2}$$

Since the slope of BC and the slope of AC are negative reciprocals, side BC and AC are perpendicular. Two sides that are perpendicular form a right angle; therefore,  $\triangle ABC$  is a right triangle.

TT 5.b. Foundations and Pre-calculus Mathematics 10 (Pearson), question 21 on page 364

21.

| Line | Equation                 | Slope          |
|------|--------------------------|----------------|
| Α    | y=-5x+7                  | <b>-5</b>      |
| В    | y=5x+15                  | 5              |
| С    | $y=\frac{1}{5}x+9$       | <u>1</u><br>5  |
| D    | $y = -\frac{1}{5}x + 15$ | $-\frac{1}{5}$ |
| E    | $y=\frac{1}{5}x+21$      | <u>1</u><br>5  |
| F    | y = -5x + 13             | -5             |
| G    | y=5x+24                  | 5              |
| Н    | $y = -\frac{1}{5}x$      | $-\frac{1}{5}$ |

Lines with identical slopes are parallel. Therefore, A is parallel to F, B is parallel to G, C is parallel to E, and D is parallel to H.

Lines whose slopes are negative reciprocals are perpendicular. Therefore, *A* and *F* are both perpendicular to *C* and *E*; *B* and *G* are both perpendicular to *D* and *H*.