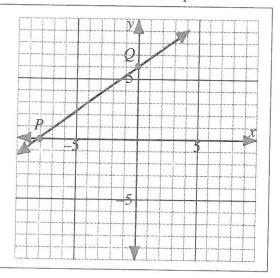
Equations of Linear Relations Lesson #8: Practice Test


- 1. The slope of the line with equation 3y = 2x 12 is
 - A.
 - B.
 - \mathbb{C} . -4
 - D. -12
- 2. The y-intercept of the graph of the line with equation y = 5x 10 is
 - A. 2
 - B. 5
 - C. 10
 - D. -10
- 3. Which equation represents a line with a slope of 3 and a y-intercept of -4?
 - $A. \quad y = -4x + 3$
 - **B.** $y = -\frac{1}{3}x 4$
 - $\mathbb{C}. \quad y = 3x 4$
 - $\mathbb{D}. \quad y = 3x + 4$
- 4. Which of the following is the equation of a line perpendicular to 5y + x + 6 = 0?
 - A. y = 5x
 - $\mathbb{B}. \quad y = x$
 - $\mathbb{C}. \quad y = \frac{1}{5}x$
 - $\mathbb{D}. \quad y = -\frac{1}{5}x$
- 5. Which of these ordered pairs can be found on the graph of the line 3x 5y 4 = 0?
 - i) (8,4)
- ii) (-3, 1) iii) (0, -0.8) iv) (-2, 2)

- i) and ii) only
- B. i) and iii) only
- C. i), ii), and iii) only
- some other combination of i), ii), iii), and iv)

- 6. The point of intersection of the line 9x 3y + 9 = 0 and the y-axis is
 - (0, 9)A.
 - B. (0,3)
 - C. (0,-1)
 - D. (0, -3)

Use the following information to answer the next two questions.

The x- and y-intercepts of the graph shown are integers.

- 7. The equation of the line PQ is
 - A. 3x + 4y + 24 = 0
 - B. 3x + 4y + 32 = 0
 - \mathbb{C} . 3x 4y + 24 = 0
 - $\mathbb{D}. \quad 3x 4y + 32 = 0$

Response

Numerical 1. Given that the line above passes through (7.2, k), the value of k, to the nearest tenth, is _____.

 _	-	-	
	1		
1	- 1		
1			- 1

8.	If the lines	ax + by + c = 0	and	dx + ey + f = 0	are parallel, then
----	--------------	-----------------	-----	-----------------	--------------------

A.
$$ae - bd = 0$$

$$\mathbb{B}. \quad ae + bd = 0$$

$$\mathbb{C}$$
. $ad - be = 0$

$$D. ad + be = 0$$

2. Given that the line joining the points (2,3) and (8,-q), where $q \in W$, is perpendicular to the line 3x - 2y - 5 = 0, then the value of q is ______.

(Record your answer in the numerical response box from left to right)

The equations of four straight lines are 9.

1)
$$7x - y = 0$$

2)
$$7x + y - 6 = 0$$

3)
$$x - 7y + 4 = 0$$

3)
$$x - 7y + 4 = 0$$
 4) $x + 7y - 2 = 0$

Which pairs of lines are perpendicular?

$$\mathbb{C}$$
. both 1) and 4) and 2) and 3)

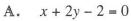
The line passing through the points (-5, -2) and (-2, -1) has equation 10.

A.
$$x + y + 3 = 0$$

B.
$$x + 3y + 5 = 0$$

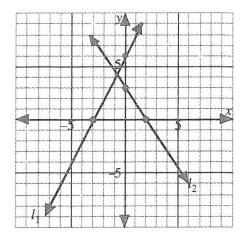
C.
$$x - 3y + 1 = 0$$

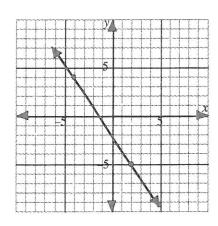
D.
$$x - 3y - 1 = 0$$



The lines 3x - y + 2 = 0 and 5x - By + 26 = 0, where $B \in W$, intersect on the y-axis.

The value of B is $_{---}$.


Which equation represents a line which is perpendicular to line l_1 and has the same x-intercept as line l_2 ?


B.
$$x + 2y + 2 = 0$$

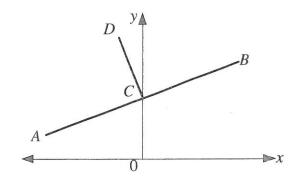
$$\mathbb{C}$$
. $2x + y - 4 = 0$

$$D. 2x + y + 4 = 0$$

Numerical 4. The equation of the line shown in the diagram is Ax + 2y + C = 0. The value of $\frac{A}{C}$, to the nearest hundredth, is _____.

(Record your answer in the numerical response box from left to right)

12. The equation of AB is x - 2y + 4 = 0. AB cuts the y-axis at C. CD is perpendicular to AB.


The equation of CD is

$$A. \quad x + 2y - 2 = 0$$

B.
$$2x + y - 2 = 0$$

$$\mathbb{C}$$
. $2x - y + 2 = 0$

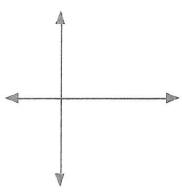
$$\mathbb{D}. \quad 2x + y - 4 = 0$$

- 13. Consider $\triangle PQR$ in which side PQ has slope $\frac{1}{3}$ and R has coordinates (-4,7). The equation of the altitude from R to PQ (the line drawn from R to PQ, perpendicular to PQ), is
 - x + 3y = 25
 - B. 3x + y = 19
 - C. 3x + y = -5
 - D. 3x + y = -19
- Which of the following lines is/are perpendicular to the line 9x + y + 2 = 0?

- i) 9y + x = 2 ii) 9y x = 2 iii) y = 9x + 2 iv) 9y = x 2
- i) and iii) only
- B. ii) only
- $\mathbb{C}.$ iv) only
- D. some other combination of i), ii), iii), and iv)
- The line l_1 passes through the points (-3, 5) and (-2, -1).

Which of the following statements is true?

- l_1 passes through (4, -37). i)
- ii) l_1 has an x-intercept of $-\frac{13}{6}$.
- l_1 is perpendicular to $y = \frac{1}{6}x + 2$.
- A. i) and ii) only
- B. i) and iii) only
- C. ii) and iii) only
- D. i), ii), and iii)
- Supported 5. The temperature at sea level is 12.1 °C. At the top of a mountain, 6 400 m above sea level, the temperature is -29.5 °C. To the nearest tenth, the rate of temperature decrease, in °C per km, is ____.



Written Response - 5 marks

- 1. Consider the points P(-7, -2), Q(2, 1), R(-2, -7), and S(8, 3).
 - Show that the equation of the line, L_1 , through S and perpendicular to PQ is y = -3x + 27.

• Determine the equation of the line, L_2 , through R and parallel to PQ. Give the answer in in slope y-intercept form.

• Draw both lines on the grid, and state a suitable window which shows *x*- and *y*-intercepts for each graph.

Answer Key

1. B			2. D	
6. B			7. C	
11. A			12. B	}
NR 1.	1	1		4

1416	1.	1	1		-+
NR	4.	0		7	5

	3.	C		4.	A			5.	В	
	8.	A		9.	C			10.	D	
	13	. C		14.	D			15.	D	
NR	2.	1			NR	3.	1	3		
NR	5	6	. 5	T		-				

Written Response

•
$$y = -3x + 27$$

$$y = \frac{1}{3}x - \frac{19}{3}$$

• x:[-5, 25, 5] and y:[-10, 35, 5]

Equations of Linear Relations Lesson #8: Practice Test

- 1. The slope of the line with equation 3y = 2x 12 is

y= 2x-4

y = -10

4 = 3x - 4

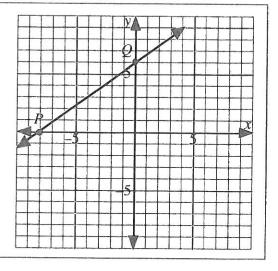
- -12
- 2. The y-intercept of the graph of the line with equation y = 5x 10 is
 - A. 2
 - 5 B.
 - 10
 - **D.)** -10
- 3. Which equation represents a line with a slope of 3 and a y-intercept of -4?

 - B. $y = -\frac{1}{3}x 4$ C y = 3x 4D. y = 3x + 4
- 4. Which of the following is the equation of a line perpendicular to 5y + x + 6 = 0?

 - $\mathbb{D}. \quad y = -\frac{1}{5}x$
- (A) y = 5xB. y = xC. $y = \frac{1}{5}x$ 5y : -x 6 y = $-\frac{1}{5}x \frac{6}{5}$ slope : $-\frac{1}{5}$

 - perpendicular slope = 5
- 5. Which of these ordered pairs can be found on the graph of the line 3x 5y 4 = 0?
 - i) (8,4)
- ii) (-3, 1)
- iii) (0, -0.8) iv) (-2, 2)

- i) and ii) only i) 3(8) 5(4) 4 = 0 ii) $3(-3) 5(1) 4 = -18 \times$
- i) and iii) only
- iii) 3(0)-5(-0.8)-4=0 /iv) 3(-2)-5(2)-4=-20 ×
- i), ii), and iii) only
- some other combination of i), ii), iii), and iv) D.


6. The point of intersection of the line 9x - 3y + 9 = 0 and the y-axis is

(0,-1)

$$\mathbf{D}$$
. $(0, -3)$

Use the following information to answer the next two questions.

The x- and y-intercepts of the graph shown are integers.

7. The equation of the line PQ is

A.
$$3x + 4y + 24 = 0$$

$$\mathbf{B.} \quad 3x + 4y + 32 = 0$$

$$3x - 4y + 32 = 0$$

The equation of the line
$$PQ$$
 is

A. $3x + 4y + 24 = 0$ $P(-8, 0)$

B. $3x + 4y + 32 = 0$

C. $3x - 4y + 24 = 0$ $Q(0, 6)$

D. $3x - 4y + 32 = 0$
 $3x - 4y + 32 = 0$

$$0 = 3x - 4y + 24$$

Response

Numerical 1. Given that the line above passes through (7.2, k), the value of k, to the nearest tenth,

8. If the lines
$$ax + by + c = 0$$
 and $dx + ey + f = 0$ are parallel, then

A.
$$ae - bd = 0$$

B. $ae + bd = 0$
C. $ad - be = 0$

by = $-ax - c$

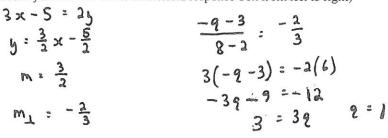
by = $-dx - f$

by = $-\frac{d}{e}x - \frac{f}{e}$

C.
$$ad - be = 0$$

D. $ad + be = 0$

$$\frac{-a}{b} = \frac{-d}{e}$$


$$-ae = -bd$$

$$0 = ae - bd = 0$$

Response

Numerical 2. Given that the line joining the points (2,3) and (8,-q), where $q \in W$, is perpendicular to the line 3x - 2y - 5 = 0, then the value of q is _____.

(Record your answer in the numerical response box from left to right)

1)
$$7x - y = 0$$
 2) $7x + y - 6 =$

2)
$$7x + y - 6 = 0$$

3)
$$x - 7y + 4 = 0$$

3)
$$x - 7y + 4 = 0$$
 4) $x + 7y - 2 = 0$

Which pairs of lines are perpendicular?

1)
$$7x = y \quad y = 7x$$
 $m = 7$
2) $y = -7x + 6$ $m = -7$
3) $x + 4 = 7y \quad y = \frac{1}{7}x + \frac{4}{7} \quad m = \frac{1}{7}$

B.

$$m=\frac{1}{7}$$

4)
$$75 = -x - 2$$
 $5 = -\frac{1}{7}x - \frac{2}{7}$ $m = -\frac{1}{7}$

10. The line passing through the points
$$(-5, -2)$$
 and $(-2, -1)$ has equation

A.
$$x+y+3=0$$
 $m = \frac{-1+2}{-2+5} = \frac{1}{3}$

B.
$$x + 3y + 5 = 0$$

C.
$$x - 3y + 1 = 0$$

D. $x - 3y - 1 = 0$
 $x - 3y - 1 = 0$

$$0 = x - 3y - 1$$

$$(\overline{\mathbb{D}}) \quad x - 3y - 1 = 0$$

Response

Numerical 3. The lines 3x - y + 2 = 0 and 5x - By + 26 = 0, where $B \in W$, intersect on the y-axis. The value of B is _____.

11. Which equation represents a line which is perpendicular to line l_1 and has the same x-intercept as line l_2 ?

A.
$$x + 2y - 2 = 0$$

B. $x + 2y + 2 = 0$

$$\mathbf{B.} \quad x + 2y + 2 = 0$$

$$\mathbb{C}. \quad 2x + y - 4 = 0$$

D.
$$2x + y + 4 = 0$$

$$m_e = \frac{r_{15e}}{r_{100}} = \frac{6}{3} = 2$$
 $m_1 = -\frac{1}{2}$

$$m_{\perp} = -\frac{1}{2}$$

$$m = -\frac{1}{2}$$
 point $(2,0)$

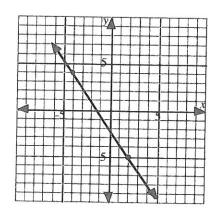
$$y-0=-\frac{1}{2}(x-2)$$

$$25 = -(x-2)$$

Response

Numerical 4. The equation of the line shown in the diagram is Ax + 2y + C = 0. The value of $\frac{A}{C}$, to the nearest hundredth, is

$$M = \frac{r_{15}e}{r_{00}} = \frac{q}{-6} = -\frac{3}{2}$$
 point (2,-5)


$$y + 5 = -\frac{3}{2}(x-2)$$

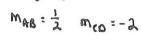
$$25+10 = -3x+6$$
 $\frac{A}{C} = \frac{3}{4} = 0.75$

$$\frac{A}{C} = \frac{3}{4} = 0.75$$

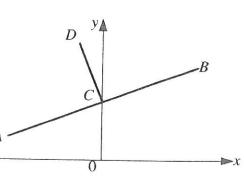
3x +25 +4 = 0

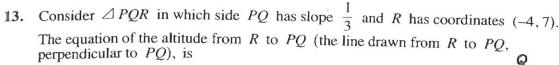
(Record your answer in the numerical response box from left to right)

- 12. The equation of AB is x 2y + 4 = 0.
 - AB cuts the y-axis at C.
 - CD is perpendicular to AB. x+4=2


カーラストス

A.
$$x + 2y - 2 = 0$$

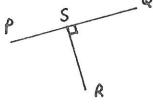

A.
$$x + 2y - 2 = 0$$


$$\mathbb{C}$$
. $2x - y + 2 = 0$

D.
$$2x + y - 4 = 0$$

B.
$$2x + y - 2 = 0$$

C. $2x - y + 2 = 0$
D. $2x + y - 4 = 0$
 $2x + y - 4 = 0$
 $2x + y - 4 = 0$
 $2x + y - 4 = 0$


A.
$$x + 3y = 25$$

B.
$$3x + y = 19$$

(C.)
$$3x + y = -3$$

$$\mathbb{D}$$
. $3x + y = -19$

A.
$$x + 3y = 25$$

B. $3x + y = 19$
C. $3x + y = -5$
D. $3x + y = -19$
 $3x + y = -5$
 $3x + y = 5 = 0$

3x + y = -514. Which of the following lines is/are perpendicular to the line 9x + y + 2 = 0? y = -9x - 2 m = -9

i)
$$9y + x = 2$$

ii)
$$9y - x = 2$$

i)
$$9y + x = 2$$
 ii) $9y - x = 2$ iii) $y = 9x + 2$ iv) $9y = x - 2$

$$iv) \quad 9y = x - 2$$

$$m = \frac{1}{9}$$

$$\mathbb{C}$$
. iv) only

i) and iii) only
i) 95 = -x + 2ii) 95 = x + 2iii) m = 9iv) $9 = \frac{1}{9}x + \frac{2}{9}$ iv) only
some other combination of i), ii), iii), and iv)

ii) and iv) are perpendicular The line l_1 passes through the points (-3,5) and (-2,-1).

Which of the following statements is true?

i)
$$l_1$$
 passes through $(4, -37)$

$$l_1$$
 passes through $(4, -37)$. ii) l_1 has an x-intercept of $-\frac{13}{6}$.

iii)
$$l_1$$
 is perpendicular to $y = \frac{1}{6}x + 2$

iii)
$$l_1$$
 is perpendicular to $y = \frac{1}{6}x + 2$. $m = \frac{-1-5}{-2+3}$: -6 $y + 1 = -6x - 12$

A. i) and ii) only

B. i) and iii) only

C. ii) and iii) only

D. i) l_1 is perpendicular to l_2 iii) l_3 iii) l_4 iiii) l_5 iii) l_5 iii) and iii) only

D. i), ii), and iii) l_4 iii) l_5 ii) l_5 iii) l_5 iii) l_5 iii) l_5 iii) l_5 iii) l_5 ii) l_5 iii) $l_$

Response

Numerical 5. The temperature at sea level is 12.1 °C. At the top of a mountain, 6 400 m above sea level, the temperature is -29.5 °C. To the nearest tenth, the rate of temperature decrease, in °C per km, is ____.

Written Response - 5 marks

1. Consider the points P(-7, -2), Q(2, 1), R(-2, -7), and S(8, 3).

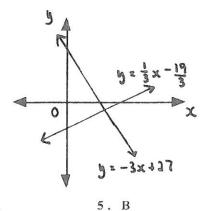
• Show that the equation of the line, L_1 , through S and perpendicular to PQis y = -3x + 27.

$$M_{PQ} = \frac{1+2}{2+7} = \frac{3}{9} = \frac{1}{3}$$

$$y - 3 = -3(x - 8)$$

• Determine the equation of the line, L_2 , through R and parallel to PQ. Give the answer in in slope y-intercept form.

$$m_{pq} = \frac{1+2}{2+7} = \frac{3}{9} = \frac{1}{3}$$

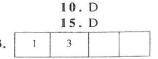

$$y + 7 = \frac{1}{3}(x+2)$$

$$y = \frac{1}{3} x + \frac{2}{3} - 7$$

$$y = \frac{1}{3}x - \frac{19}{3}$$

• Draw both lines on the grid, and state a suitable window which shows x- and y-intercepts for each graph.

NR 5.


Answer Key

1	В
6	R

7. C

5

- 8. A
- 9. C
- 13. C 14. D
 - NR 3.

Written Response

•
$$y = -3x + 27$$

•
$$y = \frac{1}{3}x - \frac{19}{3}$$

•
$$x:[-5, 25, 5]$$
 and $y:[-10, 35, 5]$