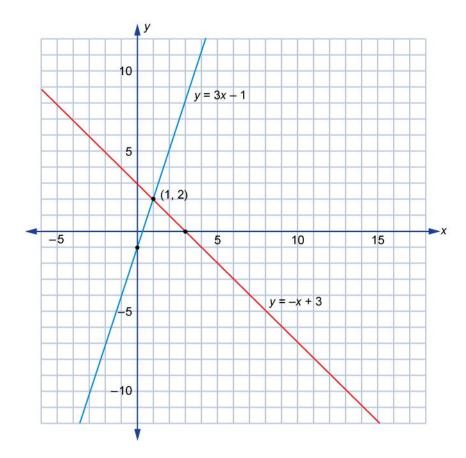
## Module 7 Lesson 4: Solving Linear Systems by Elimination

## **Are You Ready? Possible Solutions**

1. a. 
$$5x-2x+x+5=4x+5$$


b. 
$$-7y+9x-3x-12y=9x-3x-7y-12y$$
  
=  $6x-19y$ 

c. 
$$13+5w-4w-11=5w-4w+13-11$$
  
=  $w+2$ 

2. Since both equations are in slope-intercept form, use the *y*-intercept and the slope to draw each graph.

Equation 1: m = 3, y-intercept = (0, -1)

Equation 2: m = -1, y-intercept = (0, 3)



The point of intersection and solution of this system of equations is (1, 2).

3. 
$$y = 3x - 1$$
  $\leftarrow$  Equation 1  $y = -x + 3$   $\leftarrow$  Equation 2

Since both equations have isolated *y* already, substitute either expression for *y* into the other equation.

$$3x-1=-x+3$$
  $\leftarrow$  Substitute the expression for  $y$  into Equation 2.  $3x+x=3+1$   $\leftarrow$  Solve for  $x$ .  $4x=4$   $x=1$ 

Solve for y.

$$y=-x+3$$
  $\leftarrow$  Substitute the value for  $x$  into Equation 2. 
$$y=-1+3 \leftarrow$$
 Solve for  $y$ . 
$$y=2$$

The solution to the system of equations is (1, 2).

4. a. Answers may vary. One possible assignment of variable is as follows:

Let  $\ell$  = the length of the parking lot in metres and w = the width in metres.

$$2\ell + 2w = 90$$
  $\leftarrow$  Equation 1  $\ell - w = 5$   $\leftarrow$  Equation 2

b. Answers may vary. Assume that that the price of an adult ticket and a child's ticket is what is to be determined from the information. Then one way to assign variables is as follows:

Let A = the price in dollars of an adult ticket and C = the price in dollars of a child's ticket.

$$A + 2C = 28$$
  $\leftarrow$  Equation 1  
  $2A + 3C = 48$   $\leftarrow$  Equation 2

c. Answers may vary. Assuming that the problem is to find the number of dimes and quarters in the cashbox, it makes sense to let *d* be the number of dimes and let *q* be the number of quarters. Then the system of equations would be as follows:

$$10d + 25q = 405$$
  $\leftarrow$  Equation 1  $d = 2q$   $\leftarrow$  Equation 2