## Module 7 Lesson 5

TT 17. Foundations and Pre-calculus Mathematics 10 (Pearson), questions 4, 5, 6, 7, 10, 11, and 12 on page 448 Possible Solutions

- 4. a) i) 1
  - ii) -1
  - iii) 1
  - iv) -1
  - **b)** Lines i) and iii) are parallel, and lines ii) and iv) are parallel.
  - c) The following lines intersect:
    - i) and ii)
    - i) and iv)
    - ii) and iii)
    - iii) and iv)
- **5.** a) These lines form a linear system with one solution:
  - A and C
  - B and C
  - **b)** Lines A and B form a linear system with no solution.
- **6. a)** The following systems result in no solution:

$$4x + 2y = 20$$
  $x - 3y = 12$ 

$$x - 3y = 12$$

$$6x + 3y = 5$$

$$6x + 3y = 5$$
  $5x - 15y = -60$ 

b) Answers may vary. Here are two examples of systems that result in exactly one solution:

$$6x + 3y = 5$$

$$x - 3y = 12$$

$$6x+3y=5$$
  $x-3y=12$   
 $2x-6y=24$   $2x+y=10$ 

$$2x + v = 10$$

c) The following systems result in an infinite number of solutions:

$$4x + 2y = 20$$
  $x - 3y = 12$ 

$$x - 3v = 12$$

$$2x + y = 10$$

$$2x + y = 10$$
  $2x - 6y = 24$ 

- 7. a) There are different coefficients in front of the y variables, so there is one solution.
  - b) The lines are multiples of each other, so there are infinitely many solutions.
  - c) The coefficients are the same for x and y and constants are different, so they are parallel lines. There is no solution.

- **d)** The coefficients are the same for *x* and *y* and constants are different, so they are parallel lines. There is no solution.
- **10.** If the signs of the two slopes are different, the slopes are different and the lines will intersect once.
- **11.** The value of the *y*-intercept is needed. If the *y*-intercept is the same, the system will have infinitely many solutions. If the *y*-intercepts are different, the system will have no solution.
- **12.** The student is required to write an equation in three different linear systems.

## **One Solution**

Multiply the *x*-term by one constant and the *y*-term by a different constant.

$$3x - 4y = 12$$

$$6x + 2y = 12$$

## **No Solutions**

Multiply the terms on the left side of one equation by a single constant. Then multiply the term on the right side by a different constant.

$$3x - 4y = 12$$

$$3x - 4y = 24$$

## **Infinitely Many Solutions**

Multiply the terms of one equation by a single constant to obtain the second equation.

$$3x - 4y = 12$$

$$18x - 24y = 72$$