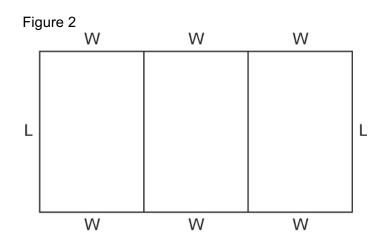
Module 7 Lesson 6


TT 5. Possible Solutions

- a. Foundations and Pre-calculus Mathematics 10 (Pearson), question 13 on page 453
 - **13.** a) The student's diagram should look like the following.

L

Figure 1 L L W W L

L

b) For 30 tables, either of the following is correct:

$$30L + 30L + 2W = 306$$

 $30W + 30W + 2L = 190$
OR
 $60L + 2W = 306$
 $2L + 60W = 190$

c) You can solve this system by elimination. Multiply the first equation by 30.

$$30(60L + 2W = 306)$$
 -> $1800L + 60W = 9180$
 $2L + 60W = 190$ -> $2L + 60W = 1090$

Subtract the equations to eliminate *W*.

$$\begin{array}{r}
 1800L + 60W = 9180 \\
 - (2L + 60W = 190) \\
 \hline
 1798L = 8990 \\
 \hline
 \frac{1798L}{1798} = \frac{8990}{1798} \\
 L = 5
 \end{array}$$

Solve for W.

$$60L + 2W = 306$$

$$60(5) + 2W = 306$$

$$300 + 2W = 306$$

$$2W = 6$$

$$\frac{2W}{2} = \frac{6}{2}$$

$$W = 3$$

The dimensions of each table are 5 m by 3 m.

- **b.** Foundations and Pre-calculus Mathematics 10 (Pearson), questions 5.a) and 6 on page 455
 - 5. a)i) Solve by substitution.

$$x + 2y = 3$$
$$x = 3 - 2y$$

Substitute the expression for *x* into the first equation.

$$-3x-4y = -2$$

$$-3(3-2y)-4y = -2$$

$$-9+6y-4y = -2$$

$$-9+2y = -2$$

$$2y = 7$$

$$\frac{2y}{2} = \frac{7}{2}$$

$$y = 3.5$$

Solve for x.

$$x + 2y = 3$$

 $x + 2(3.5) = 3$
 $x + 7 = 3$
 $x = -4$

ii) Solve by elimination. Multiply the first equation by 3.

$$3(-0.5x+0.2y=-1)$$
 Æ $-1.5x+0.6y=-3$
 $0.3x-0.6y=-1.8$ Æ $0.3x-0.6y=-1.8$

Add the equation to eliminate y.

$$-1.5x + 0.6y = -3$$
+ (0.3x - 0.6y = -1.8)
$$-1.2x = -4.8$$

$$\frac{-1.2x}{-1.2} = \frac{-4.8}{-1.2}$$

$$x = 4$$

Solve for y.

$$0.3x - 0.6y = -1.8$$

$$0.3(4) - 0.6y = -1.8$$

$$1.2 - 0.6y = -1.8$$

$$-0.6y = -3$$

$$\frac{-0.6y}{-0.6} = \frac{-3}{-0.6}$$

$$y = 5$$

iii) Isolate x in the first equation; then substitute the expression for x into the second equation.

$$x - \frac{1}{3}y = \frac{4}{3}$$
$$x = \frac{1}{3}y + \frac{4}{3}$$

Solve for y and then for x.

$$\frac{5}{6}x + \frac{1}{2}y = \frac{3}{2}$$

$$\frac{5}{6}\left(\frac{1}{3}y + \frac{4}{3}\right) + \frac{1}{2}y = \frac{3}{2}$$

$$\frac{5}{18}y + \frac{20}{18} + \frac{1}{2}y = \frac{3}{2}$$

$$\frac{5}{18}y + \frac{9}{18}y = \frac{27}{18} \cdot \frac{20}{18} \quad X \quad 18$$

$$18\left(\frac{5}{18}y\right) + 18\left(\frac{9}{18}y\right) 18\left(\frac{27}{18}y\right) 18\left(\frac{20}{18}y\right)$$

$$5y + 9y = 27 - 20$$

$$14y = 7$$

$$\frac{14y}{14} = \frac{7}{14}$$

 $y = \frac{1}{2}$

Sub y in and solve for x

$$x - \frac{1}{3}y = \frac{4}{3}$$

$$x - \frac{1}{3}\left(\frac{1}{2}\right) = \frac{4}{3}$$

$$x - \frac{1}{6} = \frac{4}{3}$$

$$x = \frac{8}{6} + \frac{1}{6}$$

$$x = \frac{9}{6}$$

$$x = \frac{3}{2}$$

6. a) Let x = the number of yellow squares. Let y = the number of red right triangles.

$$x + y = 90$$

 $25x + 12.5y = 1500$

b) Isolate *x* in the first equation; then use the substitution method.

$$x + y = 90$$

$$x = 90 - y$$

$$25(90 - y) + 12.5y = 1500$$

$$2250 - 25y + 12.5y = 1500$$

$$-12.5y + 2250 = 1500$$

$$-12.5y = -750$$

$$\frac{-12.5y}{-12.5} = \frac{-750}{-12.5}$$

$$y = 60$$

Solve for x.

$$x + y = 90$$

$$x + 60 = 90$$

$$x = 30$$

There were 30 yellow squares and 60 red right triangles used.

- **c.** Foundations and Pre-calculus Mathematics 10 (Pearson), question 28 on page 461
 - **28.** Let a = the value (in marks) of part A. Let b = the value (in marks) of part B.

$$0.875a + 0.75b = 87$$

$$a + b = 108$$

Isolate *a* in the second equation; then use the substitution method.

$$a+b=108 0.875a+0.75b=87$$

$$a=108-b 0.875(108-b)+0.75b=87$$

$$94.5-0.875b+0.75b=87$$

$$-0.125b+94.5=87$$

$$-0.125b=-7.5$$

$$\frac{-0.125b}{-0.125}=\frac{-7.5}{-0.125}$$

$$b=60$$

Solve for b.

$$a + b = 108$$

$$a + 60 = 108$$

$$a = 48$$