Review Exercise 8 - Mole-to-Mole Stoichiometry

Balance the following equations and use the mole ratio from the balanced equation to complete the table which follows each equation:

1.
$$H_2O(l)$$
 -----> $H_{2(g)}$ + $O_{2(g)}$

H ₂ O _(l)	> H _{2(g)}	+O _{2(g)}
5.00		
		0.600
	3.00	

2. _____
$$Na_{(s)}$$
 + _____ $HOH_{(l)}$ -----> _____ $H_{2(g)}$ + _____ $NaOH_{(aq)}$

8.0 mol			
	0.20 mol		
		4.80 mol	
			16.0 mol

$$3. \ \ \ \ \ \, \underline{\hspace{1cm}} Al_2(SO_4)_{3(aq)} \ \ \, + \ \ \, \underline{\hspace{1cm}} NH_4OH_{(aq)} \ \ \, ------> \ \ \, \underline{\hspace{1cm}} Al(OH)_{3(s)} \ \ \, + \ \ \, \underline{\hspace{1cm}} (NH_4)_2SO_{4(aq)}$$

$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
3.00 mol			
	2.00 mol		
		1.00 mol	
•			1.00 mol

C ₄ H _{8(g)} +	O _{2(g)}	> CO _{2(g)} +	H ₂ O _(g)
			0.212
		0.120	
	0.500		
0.320			

P _{4(s)} +	I _{2(s)}	> PI _{3(s)}
		2.82
	0.396	
2.50		

6. Use the following equation to answer the questions below.

$$N_{2(g)} + 3H_{2(g)} - - > 2NH_{3(g)}$$

- a) How many moles of hydrogen will react with 5.0 moles of nitrogen?
- b) How many moles of hydrogen and nitrogen will react to produce 20 moles of ammonia?
- c) If 4.0 moles of hydrogen are used, how many moles of nitrogen are needed?
- d) If 3.6 moles of nitrogen are used, how many moles of ammonia are produced?
- e) If 0.673 moles of ammonia are produced, how many moles of hydrogen are needed?
- f) If 2.3 moles of ammonia are produced, how many moles of nitrogen are needed?