Module 5 Summative Assessment

Marks		
Maximum Possible	Earned	%
73		

Lesson 1

View the Virtual Investigation on Oxidation States in Module 5 Lesson 1.5 and use the information to fill in the table in Question 1.

1. Identify the characteristic colour of the various oxidation states of manganese.

Answer (3 Marks)

Oxidation State	Colour
+7	
+6	
+4	

2. Classify each of the following reactions as redox or non-redox.

Answer (4 Marks)

reaction equation	redox or non-redox
3Cl₂(g) + 6NaOH(aq) →5NaCl(aq) + NaClO₃(aq) + 3H₂O(l)	
$CO_2(g) + H_2O(I) \rightarrow H_2CO_3(aq)$	
2 NH ₄ Cl(aq) + Ca(OH) ₂ (aq) →2 NH ₃ (aq) + 2H ₂ O(l) + CaCl ₂ (aq)	
2HNO ₃ (aq) + 6HI(aq) →2NO(g) +3 I ₂ (s) + 4H ₂ O(l)	

3. Describe disproportionation. Next, consider the reactions shown in Question 2 above and indicate if any of the reactions demonstrate disproportionation.

Answer (2 Marks)

Lesson 2

Use the following information to answer Questions 4 - 7.

In an experiment to study the reactivity of different substances, the following observations were made.

$$2V^{3+}(aq)+In^{1+}(aq)\rightarrow 2V^{2+}(aq)+In^{3+}(aq)$$
 spontaneous reaction $2\ Rh^{4+}(aq)+TI^{1+}(aq)\rightarrow 2\ Rh^{3+}(aq)+TI^{3+}(aq)$ spontaneous reaction $TI^{1+}(aq)+2\ V^{3+}(aq)\rightarrow TI^{3+}(aq)+2\ V^{2+}(aq)$ no evidence of a reaction

Hint: By looking at changes in oxidation numbers, you can determine the OA and RA for each reaction. Then apply the spontaneity rule. (p. 572-573 in text).

4. Using the above results, construct a table of reduction half-reactions that contains four half-reactions. Be sure to include the number of electrons in each half-reaction. Model your table on the set-up shown below:

Answer	(2 Marks)

5.	Identify the reducing agent that has the weakest attraction for electrons.
	Answer (1 Mark)
6.	Identify the oxidizing agent that has the strongest attraction for electrons.
	Answer (1 Mark)
7.	Based on the table you constructed in Question 4, write an equation that
	represents another spontaneous reaction that could occur.
	Answer (1 Mark)

View the Virtual Investigation "Predicting Redox Reactions" in Module 5 Lesson 2.3 and use the results to answer Questions 8 -12.

- 8. <u>Predict</u> the products for each system in the Virtual Investigation. Your response should include
 - All species initially present
 - All oxidizing agents and reducing agents. Identify the Strongest Reducing Agent (SRA) and Strongest Oxidizing Agent (SOA)
 - If the reaction is spontaneous, indicate "yes" and write the half-reactions and the balanced net ionic equation. If the reaction is non-spontaneous, simply indicate "no" in the blank. Include the half-reactions but it is not necessary to write net ionic equation if the reaction is non-spontaneous.
 - System 1 and 2 have been completed for you as examples. Refer to these examples before completing the rest of the System tables – they will be very helpful in clarifying common mistakes!

System 1 Example – liquid water and solid calcium

Species List	H ₂ O(I), Ca(s)
Oxidizing agents	$H_2O(I)$ $SOA = H_2O(I)$
Reducing agents	$H_2O(I)$, $Ca(s)$ SRA=Ca(s)
Spontaneous?	Yes
Reduction half- reaction	$2 H_2O(I) + 2e- \rightarrow H_2(g) + 2 OH(aq)$
Oxidation half- reaction	Ca(s) →Ca ²⁺ (aq) + 2e-
Net ionic equation	$2 H_2O(I) + Ca(s) \rightarrow Ca^{2+}(aq) + H_2(g) + 2 OH(aq)$

System 2 Example – aqueous hydrochloric acid and solid silver metal

Species List	H+(aq), Cl·(aq), H₂O(l), Ag(s)
Oxidizing agents	H ₂ O(I), H+(aq) SOA= H+(aq)
Reducing agents	$H_2O(I)$, $Ag(s)$, $Cl(aq)$, $Cl(aq) + H_2O(I)$, $SRA = Ag(s)$
Spontaneous?	No
Reduction half- reaction	2 H ⁺ (aq) + 2e- → H ₂ (g)
Oxidation half- reaction	$Ag(s) \rightarrow Ag^{1+}(aq) + 1e$ -
Net ionic equation	Non-spontaneous

System 3 – aqueous hydrochloric acid and solid magnesium metal

Answer (4 Marks)

Species List	
Oxidizing Agents	
Reducing agents	
Spontaneous?	
Reduction half-	
reaction	
Oxidation half-	
reaction	
Net ionic equation	

System 4 – Acidified aqueous iron(II) nitrate and aqueous potassium dichromate

Hint: Study the species list carefully and remember to consider combination agents!

Answer (4 Marks	١

System 5 – aqueous hydrogen peroxide and aqueous iron(III) nitrate

Hint: This system is <u>not</u> acidified.

Answer (4 Marks)

()	
Species List	
Oxidizing Agents	
Reducing agents	
Spontaneous?	
Reduction half-	
reaction	
Oxidation half-	
reaction	
Net ionic equation	

System 6 – aqueous zinc nitrate and aqueous chromium(II) chloride

Answer (4 Marks)	
Species List	
Oxidizing agents	
Reducing agents	
Spontaneous?	
Reduction half-	
reaction	
Oxidation half-	
reaction	
Net ionic equation	

System 7 – aqueous silver nitrate and solid copper metal

Answer (4 Marks)

,	
Species List	
Oxidizing agents	
Reducing agents	
Spontaneous?	
Reduction half-	
reaction	
Oxidation half-	
reaction	
Net ionic equation	

9. Record your observations from the Virtual Investigation in the following table.

Answer (5 Marks)

System	Observable Evidence of a Spontaneous Reaction
1.	Bubbling.
	Solid metal dissolves.
	pH increases.
2.	No observable changes.
3.	
4.	
5.	
6.	
7.	

10. Describe the	diagnostic test	that could	be used to	identify the	e gas produ	ıced in
System 1.						

Your response should include

- a description of how the test is performed
- identity of the gas being tested for
- the results of the test

Hint: See page 805 in your textbook for a list of diagnostic tests.

Aliswei	(3 Marks)		

11. Describe the diagnostic test that could be used to identify the gas produced in System 5.

Your response should include

- · a description of how the test is performed
- identity of the gas being tested for
- the results of the test

Hint: See page 805 in your textbook for a list of diagnostic tests.

Answer	(3 Marks)		

12. Measuring pH change is sometimes used as a diagnostic test. In which of the seven systems might we have used pH change as evidence of a spontaneous reaction? Explain your reasoning.

nswer	(2 Marks)			

Lesson 3

Perform the Virtual Investigation "**Titration 1, Exercise 1, Procedures 1 and 2**" in Module 5 Lesson 3.1 and use the results to answer Questions 13 - 15.

13. Record your results for the coarse titration. Remember, a burette measures the volume <u>dispensed</u>.

Answer (1 Mark)

Volume of NaOHadded (coarse titration)		
Initial burette reading (mL)		
Final burette reading (mL)		
Volume of NaOH used (mL)		

14. Record your results for the fine titration.

Answer (2 Marks)

Volume of NaOH added (fine titration) – Record the data from the three
most consistent trials.

	Trial 1	Trial 2	Trial 3
Initial Burette			
reading (mL)			
Final Burette			
Reading (mL)			
Volume of			
NaOH used			
(mL)			
Average			
Volume of			
NaOH used			
(mL)			

15. Calculate the concentration of the hydrochloric acid using the average volume of NaOH used from the fine titration. Follow the steps outlined below.

Answer (2 marks)

•	
Write the balanced reaction between NaOH and HCI	
Calculate moles of NaOH added from the average volume of NaOH used	
Calculate moles of HCI using the molar ratio in the balanced reaction	
Calculate concentration of HCl in mol/L	

Perform the Virtual Investigation "Redox Titration, Exercise 1, Procedures 1 and 2" in Module 5 Lesson 3.2 and use the results to answer Questions 16 - 24.

16. Fill in the data table below with the data you collected from Exercise 1, Procedure 1, Part 1 (coarse titration using the NEW hydrogen peroxide)

Answer ((1	Mark	()
,		IVICALIA	. ,

Volume of KMnO ₄ added (coarse titration)		
Initial burette reading		
(mL)		
Final burette Reading		
(mL)		
Volume of KMnO ₄ used		
(mL)		

17. Fill in the data table below with the data you collected from Exercise 1, Procedure 1, Part 2 (fine titration using the NEW hydrogen peroxide).

Answer (3 Marks)

Volume of KMnO₄ added (fine titration) - Record the data from the three most consistent trials.

	Trial 1	Trial 2	Trial 3
Initial burette reading (mL)			
Final burette reading (mL)			
Volume of KMnO ₄ used (mL)			
Average volume of KMnO ₄ used (mL)			

18. Calculate the concentration of the NEW hydrogen peroxide, following the step	S
below. Use your average volume of KMnO ₄ used the titrant volume from	
Question 17 above.	

Answer (4 Mark	s)
Write the half-	
reactions and	
net redox	
reaction between	
H_2O_2 and $KMnO_4$	
(remember KMnO₄ dissociates into K⁺ and	
MnO_4)	
Calculate moles	
of MnO ₄ added	
- I	
from the average volume of	
KMnO ₄ used	
KiviriO4 useu	
Calculate moles	
of NEW H ₂ O ₂	
Calculate	
concentration of	
NEW H ₂ O ₂	
O Llee vour enewer f	for the concentration of NEW HaCa above and Table 1 on n
-	for the concentration of NEW H ₂ O ₂ above and Table 1 on p.
_	ok to estimate the percentage by volume concentration of the eroxide solution. (No calculation is needed here.)
, ,	, ,
Answer (1 Mark)	

20. Fill in the data table below with the data you collected from Exercise 1, Procedure 2, Part 1 (coarse titration using the OLD hydrogen peroxide).

Answer (2 Marks)

Volume of KMnO ₄ added	(coarse titration)
Initial burette reading (mL)	
Final burette Reading (mL)	
Volume of KMnO ₄ used (mL)	

21. Fill in the data table below with the data you collected from Part 2 of Experiment 1 (fine titration using the OLD hydrogen peroxide).

Answer (3 Marks)

Volume of KMnO ₄ added (fine titration)			
,	Trial 1	Trial 2	Trial 3
Initial burette reading (mL)			
Final burette reading (mL)			
Volume of KMnO ₄ used (mL)			
Average volume of KMnO ₄ used (mL)			,

22. Calculate the concentration of the OLD hydrogen peroxide, following the steps below. Use your average volume of KMnO₄ used as the titrant volume.

	Answer (4 Marks)	
	Write the half-	
	reactions and	
	net redox	
	reaction between	
	H_2O_2 and KMnO ₄	
	(remember KMnO ₄ dissociates into K ⁺ and MnO ₄)	
	Calculate moles	
	of MnO₄⁻ added	
	from the average	
	volume of	
	KMnO₄ used	
	Calculate moles	
	of OLD H ₂ O ₂	
	Calculate	
	concentration of	
	OLD H ₂ O ₂	
23	Use vour calculate	ed concentration of OLD H ₂ O ₂ and Table 1 on p. 603 in your
	=	te the percentage by volume concentration of the OLD
		e solution. (No calculation is needed here.)
	Answer (1 Mark)	

concentrati	tion of the OLD hydrogen peroxic peroxide, explain any difference	on of the NEW hydrogen peroxide to the cide. Based on the properties of that you notice between the NEW and
Answer (2	2 Marks)	