| Name: | Dat | te: | |----------|-----|-----| | TAGITIO. | Dat | | ## **Student Exploration: DNA Fingerprint Analysis** **Vocabulary:** codon, DNA, DNA fingerprint, genotype, identical twins, nitrogenous base, phenotype, trait Prior Knowledge Questions (Do these BEFORE using the Gizmo.) - The two navy officers shown at left are identical twins. Why do you think identical twins look so similar? - 2. Most brothers and sisters don't look exactly the same. What causes most siblings to have different appearances? ## Gizmo Warm-up Most of an organism's **traits**, or characteristics, are encoded in **DNA**. Traits are determined by a unique sequence of **nitrogenous bases** in the DNA molecule. Except for identical twins, the order of every individual's nitrogenous bases is unique. Scientists use this fact when studying **DNA fingerprints**—patterns of bands made from analyzing a strand of DNA. In the *DNA Fingerprint Analysis* Gizmo[™], you will analyze DNA fingerprints of frogs. - 1. Select the POPULATION tab. What are the three main traits that vary between the frogs? - 2. Which frog would you expect to have the most similar DNA to frog A? Why? _____ | Activity A: | Get the Gizmo ready | |-------------|---------------------| | | | ## Question: How are DNA fingerprints used to analyze relationships? | 1. | Observe: Look at the three frogs on the TWINS tab. How does their appearance compare? | | | | |---|---|---|--|--| | 2. | Predic | t: What do you expect the DNA fingerprints of the three frogs to look like? | | | | 3. | fingerp
a singl | y: Drag frog A to the scanning station and click SCAN . Drag the resulting DNA print to the bin at the upper right of the Gizmo. Each band on the fingerprint represents the nitrogenous base of DNA. The band is dark if that base is present and pink if that is absent. | | | | | | rogs B and C. Drag their DNA fingerprints into the bin. If two frogs are identical twins, ill have exactly the same DNA fingerprint. Compare the three fingerprints. | | | | | Could | any of these frogs be identical twins? If so, which frogs? | | | | fingerprint used by the Gizmo, a complete DNA fingerprint would | | <u>re</u> : DNA is composed of four different nitrogenous bases. For the type of DNA print used by the Gizmo, a complete DNA fingerprint would have scan readouts for all trogenous bases. Knowing this, why can you not be entirely certain the frogs are real twins using the simplified fingerprints on the Gizmo? | | | | | | | | | | 5. | Apply: | Click New . For the new frogs, find the possible pair of identical twins. | | | | | A. | Which two frogs could be identical twins? | | | | | В. | How do you think DNA fingerprints can be used in the real world to identify | | | | | | relationships between individuals? | | | | | | | | | | | | | | | | Activity B: | Get the Gizmo ready: | | | |-----------------|----------------------------|--|--| | Comparing bands | Select the POPULATION tab. | | | **Introduction:** In this frog population, traits such as eye color, skin color, and the presence or absence of spots are coded for by DNA. The nitrogenous bases in a strand of DNA make up an organisms **genotype**. The physical expression of the genotype is the **phenotype**. | Qι | estion | : How are DNA fingerprints used to analyze traits? | | | | |----|---|--|--|--|--| | 1. | <u>Obse</u> | ve: Describe frog A's phenotype. | | | | | 2. | <u>Comp</u> | are: Which frogs share frog A's skin color, but not its eye color or spots? | | | | | 3. | Analyze: A group of three consecutive nitrogenous bases in a strand of DNA is a codon . In a real organism, hundreds of codons code for a trait. In the Gizmo, a single codon codes for a trait. Scan frog A and the two frogs that share only frog A's skin color. | | | | | | | Turn on the Comparison guides , and compare the three DNA fingerprints. Codon 1 is made up of bases 1–3, the codon 2 is made up of bases 4–6, etc. The last two bases are part of codon 7, which was cut off when the scan was made. | | | | | | | Α. | Which codon or codons are identical in all three frogs? | | | | | | В. | Scan more frogs with orange skin until you are confident that you have identified the correct codon for orange skin. Describe the results: | | | | | | C | Which codon codes for orange skin in this frog population? | | | | | 4. | Analy | ze: Pick out two frogs with blue skin and nothing else in common. | | | | | | A. | Which codon do they share? | | | | | | В. | Scan two more frogs with blue skin to confirm you have identified the correct codon. | | | | | | | Describe the results: | | | | | | | | | | | (Activity B continued on next page) ## **Activity B (continued from previous page)** 5. <u>Collect Data</u>: Fill in the column for orange skin in the table below. For the codon pattern, shade in the dark bands but not the light colored bands. Then, continue scanning frogs until you are able to complete the rest of the columns in the table. | | Orange skin | Blue skin | Pink eyes | Green eyes | Spots | No spots | | |---------------|-------------|-----------|-----------|------------|-------|----------|--| | Codon | | | | | | | | | Bases | | | | | | | | | Codon pattern | | | | | | | | | 6. | Analyze: Does the same codon always control skin color, eye color, and the presence of | | | | | |-----|---|--|--|--|--| | | spots? Why do you think this is the case? | | | | | | | | | | | | | 7. | Apply: Look at the DNA fingerprint at right. Describe the frog's phenotype. | | | | | | 8. | Interpret: Click New to get a new population. Again, determine which codons code for which traits. Compare the results with the table above. How do the codons used to code for skin color, eye color, and spots in this new population of frogs compare to the first population you tested? | | | | | | 9. | Explain: Suppose a biologist found a rare frog and wanted to determine which species it belonged to. How could a biologist use a DNA fingerprint of the frog to accomplish this task? | | | | | | 10. | Extend your thinking: What other applications of DNA fingerprints can you think of? | | | | | | | | | | | |