ASSIGNMENT 14

28 Compton, de Broglie, and Wave-Particle Duality

Marks Total

This assignment is worth 28 marks. The value of each question is noted in parentheses in the left margin. Note: The answer areas will expand to fit the length of your response.

- 1. There are similarities and differences between the Photoelectric Effect and Compton Scattering. Complete each of the six partial statements below using the following guide; all you need to provide for an answer is PE, CS, BOTH, or NEITHER.
 - PE if the statement only applies to the Photoelectric Effect
 - **CS** if the statement only applies to Compton Scattering
 - **BOTH** if the statement only applies to both the Photoelectric Effect and Compton Scattering
 - **NEITHER** if the statement applies to Neither the Photoelectric Effect or Compton Scattering

(1)	a. Energy is conserved in
Answer:	
(1)	b. Photons are observed before and after the interaction in
Answer:	
(1)	c. Electrons are observed as the result of the experiment in
Answer:	
(1)	d. Angles are measured in the experiment in
Answer:	
(1)	e. Photons with very low energies such as 5.0 to 10.0 eV is observed in
Answer:	
(1)	f. Ionization occurs in
Answer:	

(2) 2.	What quantity measured in the Compton effect experiment show the wave-particle duality of light?
Answer:	
(5) 3.	An X-ray with a frequency of 3.74×10^{20} Hz is incident on a thin piece of metal. The lower frequency X-ray on the other side is observed deflected at 48°. What is the frequency of the deflected X-ray?
Answer:	
(5) 4.	A scientist changes the frequency of an incident X-ray to 4.50×10^{19} Hz and measures the deflected X-ray frequency of 4.32×10^{19} Hz. What was the angle of deflection?
Answer:	

(2) 5.	Can the equation $E = pc$ be applied to particles? Why or why not?
Answer:	
71100001.	
(0)	(4.07.40-27)
(3) 6.	A stationary hydrogen atom with a mass of 1.67×10^{-27} kg absorbs a photon of light with 10.2 eV. What is the velocity of the hydrogen atom after absorbing the photon in a perfectly inelastic collision?
Answer:	periodity includes completi.
(2) 7.	Describe the results of performing Young's experiment with x-rays and then high speed electrons.
Answer:	

Physics 30:	Assignment	14

(2) 8.	How do the results of performing Young's experiment with x-rays and then high speed electrons support the wave-particle model?
Answer:	
(1) 9.	All of the following quantities can be measured or calculated for light waves and subatomic particles except
	A. momentum
	B. velocity
	C. frequency
	D. energy
Answer:	

When you have completed all of the questions in this assignment, submit your work.