ASSIGNMENT 18

50 Marks Total	Part One: The Nucleus and Radioactive Decay Part One of this assignment is worth 32 marks. The value of each question is noted in the left margin in parenthesis. Note: The answer areas will expand to fit the length of your response.
(1) 1. Answer:	Provide the equation when U-238 emits an alpha particle.
2.	Regarding your response to question one above, answer the following three questions.
(1)	a. Is the atomic mass (number of nucleons) conserved on both sides of the equation? How can you tell?
Answer:	
(1)	b. Is the atomic number (number of protons or positive charges) conserved on both sides of the equation? How can you tell?
Answer:	
(1)	c. What is the common name of the particle that is always produced in alpha decay?
Answer:	
(1) 3. Answer:	Write the equation when C-14 emits a (negative) beta particle.

4.	Regarding	your response to question three above, answer the following three questions.
(3)	a.	In the equation of beta-negative decay for C-14, what happened to one of the neutrons? Specifically, list three things that form from the neutron.
Answer:		
(1)	b.	Is the atomic mass (number of nucleons) conserved on both sides of the equation? How can you tell?
Answer:		
(1)	C.	Is the atomic number conserved on both sides of the equation? How can you tell?
Answer:		
5.	Alpha, gar abilities.	mma, and beta radiation have different energies hence different penetrating
(1)	a.	What is the least penetrating of these three forms of radiation?
Answer:		
(1)	b.	What is the most penetrating of these three forms of radiation?
Answer:		
(2) 6.		onservation of nucleons and the conservation of charge to complete the transmutation equation.
		→ 15/8 O + 0/1 beta +
Answer:		

(2) 7.	What is	the nucl	lear equa	tion when cu	urium 240 unde	ergoes alph	na decay?	
			?	>	??	+	?	
Answer:								
7 thower.								
(2) 8.	What is	the nucl	lear equa	tion when pl	utonium 244 u	ndergoes r	negative beta de	ecay?
			2	_	2	_	?	
			<u>:</u>	/	<u>.</u>	т	<u>.</u>	
Answer:								
•	T. (!!				, 1 1'	•		
9.	i ne toli	owing se	ven ques	tions relate	to nuclear radi	ation.		
(2)	a.	What is r	adiation s	sickness?				
Answer:								
(2) Answer:	b.	How doe	s radiatio	n cause dar	nage to living t	issue?		
Allower.								
(2)	C.	All forms	of ionizin	ng radiation o	can be danger	ous. Identi	fy which form o	f radiation
							h it is dangerou	
Answer:								
(2)	d.	Contract	ionizina	and non-ioni	zina radiation i	in terms of	their effects on	the human
		body.	iornzing d	and 11011-10111	Zing radiation		THOU CHECKS OH	THE HUITIAN
Answer:								

Answer:

(1)		If there are 128 atoms of the substance initially, how many atoms remain after 40 and 60 seconds?
Answer:		
(1)		If there are 128 atoms of the substance initially, how many atoms remain after 80 and 100 seconds?
Answer:		
(1) Answer:	d.	What pattern of decay do you notice happening after every 20 seconds?
2.	An ancient	wood sample is known to be 2500 years old.
(3)		Knowing that the half-life of carbon is 5730 years, calculate the percentage of remaining carbon-14 in the wood sample.
Answer:		
(1)		Explain how the calculation you made in 3a could be used to measure the accuracy of radiocarbon dating?
Answer:		

3. Molybdenum-99 is radioactive. A 100 gram sample decays according to the table below.

Time (h)	Sample (g)
0	100
10	90
100	35
152	20

(3)

a. Graph the data in the table.

Answer:

(1)

b. From your graph, how much time has elapsed if 60 g of the original 100 g are left?

Answer:

4. An unknown substance undergoes radioactive decay according to the graph below.

(1)

Using the graph above, determine the half-life of the substance.

Answer:

b. Identify the substance using the chart below.

(1)

Isotope	Half-life (a)	Decay Mode
204/81 TI	3.78	beta-negative
210/82 Pb	22.3	beta-negative
229/90 Th	7880	alpha
3/1 H	12.3	beta-negative
252/99 Es	1.29	alpha

Answer:

c. Write the nuclear decay equation for the substance.

(1) Answer:

(3) 5.	The half-life of americium-241 is 457.699 years. A typical smoke detector contains 33.1 kBq of americium-241. Determine the amount of americium-241 remaining after 15.0 years. Show all work.
Answer:	

When you have completed all of the questions in this assignment, submit your work.