Unit 1: Set Theory Lesson 1A: Solutions

• If you have any difficulty with these solutions, please contact your teacher before continuing.

Page 9, Your Turn

- Natural numbers from 1 to 240 using set notation. $N = \{x \mid 1 \le x \le 240, x \in N\}$
- Multiples of 4. This goes only to 60 because that is the highest number that allows a multiple of 4 to be in the values of 1 to 240. $F = \{f | f = 4x, 1 \le x \le 60, x \in N\}$
- Multiples of 12. This only goes to 20 because that is the highest number that allows a multiple of 12 to be in the values of 1 to 240. $T = \{t \mid t = 12x, 1 \le x \le 20, x \in N\}$
- $F' = \{\text{non-multiples of 4 from 1 to 240}\}$

Relationship of the subsets can be shown $T \subset F \subset N$

Page 12, Your Turn

Answers will vary for this solution. Contact your teacher to confirm that your answer is correct.

Possible solution: fur-bearing (subsets: cats, dogs, other), feathered, and scaly.

Page 11, Your Turn

E' contains both the odd triangular numbers and numbers that are not triangular. The set O, the odd triangular numbers, is a subset of E'.

Mathematics 30-2

Lesson 1A: Solutions

Unit 1: Set Theory

• If you have any difficulty with these solutions, please contact your teacher before continuing.

Page 13, Your Turn

a. E = {all sums of two six-sided dice}L = {sums less than 6}G = {sums greater than 6}

- b. n(E) = 36 n(L) = 10n(G) = 21
- c. n(L or G) = n(L) + n(G) n(L or G) = 10 + 21n(L or G) = 31

Verify: Because there are 5 ways that the sum can be 5 and there are 36 total sums, there are 36 - 5 = 31 ways that the sum can be greater than 6 or less than 6.