

• If you have any difficulty with these solutions, please contact your teacher before continuing.

Page 82, Question 6a

Page 82, Question 6d

$$\frac{n!}{(n-1)!}$$

$$= \frac{n(n-1)!}{(n-1)!}$$

$$= \frac{n(n-1)(n-2)(n-3)!}{(n-3)!}$$

$$= \frac{n(n-1)(n-2)(n-3)!}{(n-3)!}$$

$$= n(n-1)(n-2)$$

$$= n(n-1)(n-2)$$


$$= n(n^2 - 2n - 1n + 2)$$

$$= n(n^2 - 3n + 2)$$

$$= n^3 - 3n^2 + 2n$$

Page 87, Your Turn

- a. $n+3 \ge 0$, so the values of n that make (n+3)! defined are $n \ge -3$.
- b. numerator: $n \ge 0$; so, the values of n that make (n)! defined are $n \ge 0$. denominator: $n+2 \ge 0$; so, the values of n that make (n+2)! defined are $n \ge -2$. Both expressions must be defined; so, the restriction that satisfies both is $n \ge 0$.

• If you have any difficulty with these solutions, please contact your teacher before continuing.

Page 80, Your Turn

$$\frac{(n+4)!}{(n+2)!} = 6$$

$$\frac{(n+4)(n+3)(n+2)!}{(n+2)!} = 6$$

$$\frac{(n+4)(n+3)(n+2)!}{(n+2)!} = 6$$

$$(n+4)(n+3) = 6$$

$$n^2 + 7n + 12 = 6$$

$$n^2 + 7n + 6 = 0$$

$$(n+1)(n+6) = 0$$

$$n = -1, -6$$

Verify the solutions:

Left Side	Right Side
$\frac{(n+4)!}{(n+2)!}$	6
$\frac{(-1+4)!}{(-1+2)!}$	
$\frac{(3)!}{(1)!}$	
6	

Left Side	Right Side
$\frac{(n+4)!}{(n+2)!}$	6
$\frac{(-6+4)!}{(-6+2)!}$	
$\frac{(-2)!}{(-4)!}$	
undefined	

Because n = -6 results in numbers that are not natural numbers it is not an acceptable solution. Therefore, n = -1 is the only solution.