

1. a.
$$\frac{4}{2x-1} = \frac{1}{x-2}$$

$$\left(\frac{4}{2x-1}\right)(2x-1)(x-2) = \left(\frac{1}{x-2}\right)(2x-1)(x-2)$$

$$\left(\frac{4}{2x-1}\right)(2x-1)(x-2) = \left(\frac{1}{x-2}\right)(2x-1)(x-2)$$

$$4(x-2) = 1(2x-1)$$

$$4x-8 = 2x-1$$

$$2x-8 = -1$$

2x = 7

 $x = \frac{7}{2}, \qquad x \neq \frac{1}{2}, 2$

Verify
$$x = \frac{7}{2}$$
.

Left Side	Right Side
$\frac{4}{2x-1}$	$\frac{1}{x-2}$
$\frac{4}{2\left(\frac{7}{2}\right)-1}$	$\frac{1}{\left(\frac{7}{2}\right)-2}$
$\frac{4}{7-1}$	$\frac{1}{\left(\frac{7}{2}\right) - \left(\frac{4}{2}\right)}$
$\frac{4}{6}$	$\frac{1}{\left(\frac{3}{2}\right)}$
$\frac{2}{3}$	$\frac{2}{3}$

1. b.
$$\frac{12}{10+y} + \frac{12}{10-y} = \frac{5}{2}$$

$$\left[\left(\frac{12}{10+y} \right) (2)(10+y)(10-y) \right] + \left[\left(\frac{12}{10-y} \right) (2)(10+y)(10-y) \right] = \left[\left(\frac{5}{2} \right) (2)(10+y)(10-y) \right]$$

$$\left[\left(\frac{12}{10+y} \right) (2)(10+y)(10-y) \right] + \left[\left(\frac{12}{10-y} \right) (2)(10+y)(10-y) \right] = \left[\left(\frac{5}{2} \right) (2)(10+y)(10-y) \right]$$

$$\left[12(2)(10-y) \right] + \left[(12)(2)(10+y) \right] = \left[(5)(10+y)(10-y) \right]$$

$$240 - 24y + 240 + 24y = 500 - 50y + 50y - 5y^2$$

$$480 = 500 - 5y^2$$

$$5y^2 - 20 = 0$$

$$5(y^2 - 4) = 0$$

$$5(y^2 - 4) = 0$$

$$y - 2 = 0 \quad y + 2 = 0$$

$$y - 2 = 0 \quad y + 2 = 0$$

You must verify both solutions. (See next page.)

Verify y = 2.

Left Side	Right Side
$\frac{12}{10+y} + \frac{12}{10-y}$	5/2
$\frac{12}{10+2} + \frac{12}{10-2}$	
$\frac{12}{12} + \frac{12}{8}$	
$\frac{2}{2} + \frac{3}{2}$	
$\frac{5}{2}$	

Verify y = -2.

Left Side	Right Side
$\frac{12}{10+y} + \frac{12}{10-y}$	$\frac{5}{2}$
$\frac{12}{10 + (-2)} + \frac{12}{10 - (-2)}$	
$\frac{12}{8} + \frac{12}{12}$	
$\frac{3}{2} + \frac{2}{2}$	
$\frac{5}{2}$	

- If you have any difficulty with these solutions, please contact your teacher before continuing.
- Let t = time Sheena and Jeff take to deliver the papers together 2.

Susan completes
$$\frac{1 \text{ route}}{40 \text{ minutes}} = \frac{1}{40}$$
 route per minute

Jeff completes
$$\frac{1 \text{ route}}{50 \text{ minutes}} = \frac{1}{50}$$
 routes per minute

Together, they complete $\frac{1 \text{ route}}{t \text{ minutes}} = \frac{1}{t}$ routes per minute

$$\frac{1}{40} + \frac{1}{50} = \frac{1}{t}$$

$$\left[\left(\frac{1}{40} \right) (40)(50)(t) \right] + \left[\left(\frac{1}{50} \right) (40)(50)(t) \right] = \left[\left(\frac{1}{t} \right) (40)(50)(t) \right]$$

$$\left[\left(\frac{1}{40} \right) (40)(50)(t) \right] + \left[\left(\frac{1}{50} \right) (40)(50)(t) \right] = \left[\left(\frac{1}{t} \right) (40)(50)(t) \right]$$

$$[(1)(50)(t)] + [(1)(40)(t)] = [(1)(40)(50)]$$

$$50t + 40t = 2000$$

$$90t = 2000$$

$$t = \frac{200}{9}$$

$$t = 22.\overline{2}$$
 $t > 0 \leftarrow$

The non-permissible value is $t \neq 0$. However, the value for $t = 22.\overline{2}$ t > 0 time must be a positive value; therefore, the restriction on the variable t is written as t > 0.

You must verify your solution. (See next page.)

Verify the solution $t = \frac{200}{9}$.

Left Side	Right Side
$\frac{1}{40} + \frac{1}{50}$	$\frac{1}{t}$
$\frac{5}{200} + \frac{4}{200}$	$\frac{1}{\left(\frac{200}{9}\right)}$
$\frac{9}{200}$	$\frac{9}{200}$

When the solution $t = \frac{200}{9}$ is substituted into the original equation, the left side of the equation equals the right side of the equation. This means the solution $t = \frac{200}{9} = 22.\overline{2}$ is verified to be correct.

Sheena and Jeff would take approximately 22 minutes to deliver the papers if they worked together.