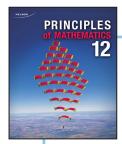

Lesson 5A: Solutions


• If you have difficulty with these solutions, please contact your teacher before continuing.

Page 287, Question 1

	degree	leading coefficient	constant term	
a.	2	6	-2	1
b.	1	$-\frac{2}{3}$	10	1
c.	3	-1	6	1
d.	3	4	-10	1

Page 294, Question 1

	Is this a polynomial?	Reasoning
a.	Yes	The curve is smooth and continuous. This is the graph of a quadratic function.
b.	No	The curve is not continuous; it is split into two parts.
c.	Yes	The curve is smooth and continuous. This is the graph of a constant function.
d.	Yes	The curve is smooth and continuous. This is the graph of a cubic function.
e.	No	The curve is not continuous; it is split into four parts.
f.	No	The curve is not smooth; it comes to a point each time it touches the x -axis.

Page 288, Question 5a

The leading coefficient, 3, is positive and the degree is 3. This indicates the function is a cubic that extends from Quadrant III to Quadrant I. As the x-values decrease, the graph tend towards negative infinity. As the x-values increase, the graph tends towards positive infinity

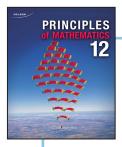
Page 288, Question 5b

The leading coefficient, -1, is negative and the degree is 2. This indicates the function is a quadratic that extends from Quadrant III to Quadrant IV. Because it opens down, both ends tend towards negative infinity.

Page 288, Question 5c

Multiply this out to get $h(x) = x^2 + 2x$. The leading coefficient, 1, is positive and the degree is 2. This indicates the function is a quadratic that extends from Quadrant II to Quadrant I. Because it opens up, both ends tend towards positive infinity.

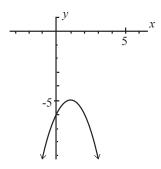
Page 288, Question 5d

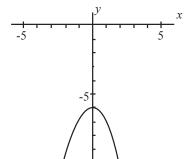

The leading coefficient, -1, is negative and the degree is 3. This indicates the function is a cubic that extends from Quadrant II to Quadrant IV. As the x-values decrease, the graph tends towards positive infinity. As the x-values increase, the graph tends towards negative infinity.

Page 288, Question 5e

The leading coefficient, –1, is negative and the degree is 1. This indicates the function is a linear that extends from Quadrant II to Quadrant IV. As the *x*-values decrease, the graph tends towards positive infinity. As the *x*-values increase, the graph tends towards negative infinity.

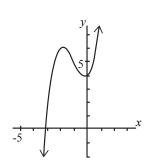
Page 288, Question 5f

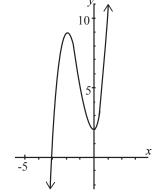

The leading coefficient, $\frac{3}{2}$, is positive and the degree is 3. This indicates the function is a cubic that extends from Quadrant III to Quadrant I. As the x-values decrease, the graph tends towards negative infinity. As the x-values increase, the graph tends towards positive infinity.

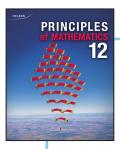


Answers will vary for Question 10. Contact your teacher to confirm that your answers are correct.

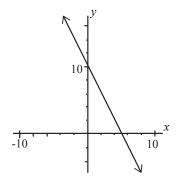
Page 289, Question 10a

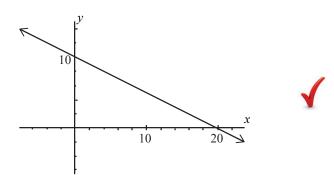

Possible solutions:





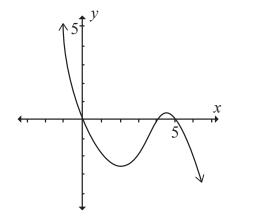
Page 289, Question 10b

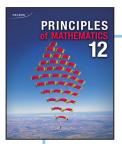




Answers will vary for Question 10. Contact your teacher to confirm that your answers are correct.

Page 289, Question 10c


Possible solutions:


Page 289, Question 10d

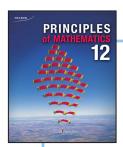
Lesson 5A: Solutions

• If you have any difficulty with these solutions, please contact your teacher before continuing.

Page 288, Questions 7a - d

The answers below are based on a visual inspection of the equations only, without graphing.

	number of possible x-intercepts	y-intercepts	end behaviour	domain	range	number of possible turning points
a.	1	5	Extends from Quadrant II to Quadrant IV	$\{x \in R\}$	$\{y \in R\}$	0
b.	0, 1, or 2	-6	Extends from Quadrant II to Quadrant I	$\{x \in R\}$	$\{y \mid y \ge \text{minimum}, \\ y \in R\}$	1
c.	1, 2, or 3	-1	Extends from Quadrant III to Quadrant I	$\{x \in R\}$	$\{y \in R\}$	0 or 2
d.	1, 2, or 3	0	Extends from Quadrant II to Quadrant IV	$\{x \in R\}$	$\{y \in R\}$	0 or 2

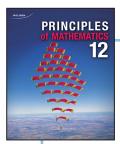

Page 290, Question 14a

The answer below is based on a visual inspection of the equation only, without graphing.

The degree is 3; therefore, it is a cubic function. The leading coefficient is positive; therefore, the function is increasing from left to right. The graph extends from Quadrant III to Quadrant I. It has a *y*-intercept of 25.720 and may have 1, 2, or 3 *x*-intercepts.

Page 290, Question 14b

The constant term represents the y-intercept, which is the price of gas in 1979. \checkmark


Page 294, Question 4a

	i.	ii.	iii.	iv.
degree	3	2	1	3
x-intercept(s)	5	-1.5 2	7	-1 3
y-intercept	4	-6	2	9 🕢
end behaviour	Extends from Quadrant II to Quadrant IV	Extends from Quadrant II to Quadrant I	Extends from Quadrant II to Quadrant IV	Extends from Quadrant III to Quadrant I
domain	$\{x \in R\}$	$\{x \in R\}$	$\{x \in R\}$	$\{x \in R\}$
range	$\{y \in R\}$	$\{y y \ge -6, \{x \in R\}$	$\{y \in R\}$	$\{y \in R\}$
number of turning points	2	1	0	2

Page 294, Question 4b

	i.	ii.	iii.	iv.
sign of the leading coefficient	negative	positive	negative	positive 🗸
value of the constant term	4	-6	2	9 11

Lesson 5A: Solutions

• If you have any difficulty with these solutions, please contact your teacher before continuing.

Page 289, Question 13

Equation	Graph	Reasoning
i.	a	The equation has a negative leading coefficient, which means the graph is decreasing left to right. The constant term of the equation is 0; so the graph has a <i>y</i> -intercept of 0.
ii.	d	The equation has a positive leading coefficient, which means the graph is increasing left to right. The constant term of the equation is 3; so, the graph has a <i>y</i> -intercept of 3.
iii.	b	The equation has a negative leading coefficient, which means the graph is decreasing left to right. The constant term of the equation is 3; so, the graph has a <i>y</i> -intercept of 3.
iv.	С	The equation has a positive leading coefficient, which means the graph in increasing left to right. The constant term of the equation is 0; so, the graph has a <i>y</i> -intercept of 0.

Page 294, Question 2b

Equation	Graph	Reasoning
i.	d	The equation has degree 3, which means the graph is a cubic. The equation has a positive leading coefficient, which means the graph is increasing left to right. The constant term of the equation is -2 ; so, the graph has a y -intercept of -2 .
ii.	С	The equation has only a constant term. The graph of a constant term is always a horizontal line. This term is 4, which means the graph has a <i>y</i> -intercept of 4.
iii.	a	The equation has a degree 2, which means the graph is a quadratic. The equation has a negative leading coefficient, which means the graph extends from Quadrant III to Quadrant IV. The constant term of the equation is 5; so, the graph has a <i>y</i> -intercept of 5.