

1.

2. The graphs are symmetrical about the line y = x. They are inverses of each other.

Equation

3.

Example:	8	$y = 8\log_{10} x$	-5
	4	$y = 4\log_{10} x$	-3 -5
	0.5	$y = 0.5 \log_{10} x$	-5-
			↑

 $y = -0.5 \log_{10} x$

Parameter a

-0.5

Chart continued on next page.

-5-

Graph

Parameter a	Equation	Graph
-4	$y = -4\log_{10} x$	-5
-8	$y = -8\log_{10} x$	-5

4.

- *x*-intercept 1
- number of *y*-intercepts 0
- end behaviour

The function is increasing. It extends from Quadrant IV to Quadrant I. As the *x*-values decrease, the graph tends towards the *y*-axis. As the *x*-values increase, the graph tends towards positive infinity.

The function is decreasing. It extends from Quadrant I to Quadrant IV. As the *x*-values decrease, the graph tends towards the *y*-axis. As the *x*-values increase, the graph tends towards positive infinity.

- domain $\{x|x>0, x\in R\}$
- range $\{y \in R\}$

5.

6. The graphs are symmetrical about the line y = x. They are inverses of each other.

7.

Examp	le:

Parameter a	Equation	Graph
8	$y = 8 \ln x$	-5
4	$y = 4 \ln x$	-3 -5

Chart continued on next page.

Parameter a	Equation	Graph
0.5	$y = 0.5 \ln x$	-5
-0.5	$y = -0.5 \ln x$	-5
-4	$y = -4 \ln x$	-3 -5
-8	$y = -8 \ln x$	5-5-

- 8. *x*-intercept 1
 - number of *y*-intercepts 0
 - end behaviour

The function is increasing. It extends from Quadrant IV to Quadrant I. As the x-values decrease, the graph tends towards the y-axis. As the x-values increase, the graph tends towards positive infinity.

The function is decreasing. It extends from Quadrant I to Quadrant IV. As the x-values decrease, the graph tends towards the y-axis. As the x-values increase, the graph tends towards positive infinity.

- domain $\{x|x > 0, x \in R\}$
- range $\{y \in R\}$
- 9. Yes. If a > 0, the logarithmic function increases and extends from Quadrant IV to Quadrant I. If a < 0, the logarithmic function is decreasing and extends from Quadrant I to Quadrant IV.
- 10. No. The characteristics are the same regardless of base 10 or base e.