

• If you have any difficulty with these solutions, please contact your teacher before continuing.

1.

I	Investigating the Product Law of Logarithms		
1	og 12 + log 2 = 1.380		
1	og 6 + log 4 = 1.380		
1	og 8 + log 3 = 1.380		

2. All three expressions have the same value. The three logarithmic expressions all have numbers that multiply to equal 24.

3.

Investigating the Product Law of Logarithms		
$\log 12 + \log 2 = 1.380$	$\log 24 = 1.380$	
$\log 6 + \log 4 = 1.380$		
$\log 8 + \log 3 = 1.380$		

4. The values of the expressions in the first column are equal to the value of the expression in second column.

5.

Investigating the Product Law of Logarithms		
$\log 12 + \log 2 = 1.380$	$\log 24 = 1.380$	$\log m + \log n = \log mn$
$\log 6 + \log 4 = 1.380$		
$\log 8 + \log 3 = 1.380$		

• If you have any difficulty with these solutions, please contact your teacher before continuing.

6.

Investigating the Quotient Law of Logarithms		
$\log 12 - \log 6 = 0.301$		
$\log 8 - \log 4 = 0.301\dots$		
$\log 6 - \log 3 = 0.301\dots$		

7. All three expressions have the same value. The three logarithmic expressions all have numbers that divide to equal 2.

8.

Investigating the Quotient Law of Logarithms		
$\log 12 - \log 6 = 0.301$	$\log 2 = 0.301$	
$\log 8 - \log 4 = 0.301\dots$		
$\log 6 - \log 3 = 0.301$		

9. The values of the expressions in the first column are equal to the value of the expression in the second column.

10.

Investigating the Quotient Law of Logarithms		
$\log 12 - \log 6 = 0.301$	$\log 2 = 0.301$	(m)
$\log 8 - \log 4 = 0.301$		$\log m - \log n = \log \left(\frac{m}{n}\right)$
$\log 6 - \log 3 = 0.301$		

If you have any difficulty with these solutions, please contact your teacher before continuing.

11.

Investigating the Power Law of Logarithms		
$\log 2 = \log 2^1 = 0.301$		
$\log 4 = \log 2^2 = 0.602$		
$\log 8 = \log 2^3 = 0.903$		
$\log 16 = \log 2^4 = 1.204$		

12. All four expressions in the first column have different values; however, they appear to be increasing by equal amounts.

13.

Investigating the Power Law of Logarithms		
$\log 2 = \log 2^1 = 0.301$	$1 \cdot \log 2 = 0.301$	
$\log 4 = \log 2^2 = 0.602$	$2 \cdot \log 2 = 0.602$	
$\log 8 = \log 2^3 = 0.903$	$3 \cdot \log 2 = 0.903$	
$\log 16 = \log 2^4 = 1.204$	$4 \cdot \log 2 = 1.204$	

14. The values for each expression in the second column are equal to the corresponding value in the first column.

15.

Investigating the Power Law of Logarithms		
$\log 2 = \log 2^1 = 0.301$	$1 \cdot \log 2 = 0.301\dots$	$\log m^n = n \log m$
$\log 4 = \log 2^2 = 0.602$	$2 \cdot \log 2 = 0.602$	
$\log 8 = \log 2^3 = 0.903$	$3 \cdot \log 2 = 0.903$	
$\log 16 = \log 2^4 = 1.204$	$4 \cdot \log 2 = 1.204$	