

• If your have any difficulty with these solutions, please contact your teacher before continuing.

Page 444, Your Turn (top of page)

Let $x = \log 12$ and $y = \log 6$

Write the equations in exponential form:

$$10^x = 12$$

$$10^{y} = 6$$

$$\frac{12}{6} = 2$$

Therefore,

$$\frac{10^x}{10^y} = 2$$

Apply the exponent law for division:

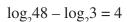
$$10^{(x-y)} = 2$$

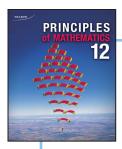
Write the equation in logarithmic form:

$$x - y = \log 2$$

Substitute the original expressions for x and y:

$$\log 12 - \log 6 = \log 2$$


Page 444, Your Turn (bottom of page)


$$\log_2 48 - \log_2 3$$

$$=\log_2\left(\frac{48}{3}\right)$$

$$=\log_2(16)$$

The exponent that must be applied to 2 to get 16 is 4.

• If your have any difficulty with these solutions, please contact your teacher before continuing.

Page 445, Your Turn

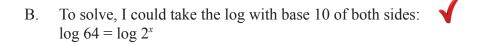
$$2\log_3 6 + \log_3(0.75)$$

$$= \log_3 6^2 + \log_3 (0.75)$$

$$= \log_3 36 + \log_3 (0.75)$$

$$=\log_3(36\cdot 0.75)$$

$$=\log_3 27$$

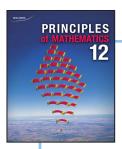

The exponent that must be applied to 3 to get 27 is 3.

$$2\log_3 6 + \log_3 (0.75) = 3$$

Page 450, Reflecting

A. Verify:

LS	RS
5000	$3215(1.024)^n$
	3215(1.024) ^{15.620}
	5000
LS = RS	


Apply the power law of logarithms to simplify the right side of the equation: log 64 = x log 2

To isolate *x*, divide both sides by log 2:

$$x = \frac{\log 64}{\log 2}$$

Evaluate the expression on the right side using a calculator to determine x:

The answer is 6.

 If your have any difficulty with these solutions, please contact your teacher before continuing.

Page 451, Your Turn
$$5^{x+2} = 104$$

$$\log 5^{x+2} = \log 104$$

$$(x+2)\log 5 = \log 104$$

$$x+2 = \frac{\log 104}{\log 5}$$

$$x = \frac{\log 104}{\log 5} - 2$$

$$x = 0.885...$$

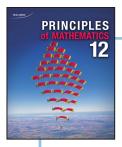
To three decimal places, x = 0.886

Page 453, Your Turn (top of page)

$$100 = 500 \left(\frac{1}{2}\right)^{\frac{t}{3.6}}$$

$$\frac{100}{500} = \left(\frac{1}{2}\right)^{\frac{t}{3.6}}$$

$$\log\left(\frac{100}{500}\right) = \log\left(\frac{1}{2}\right)^{\frac{t}{3.6}}$$


$$\log\left(\frac{100}{500}\right) = \left(\frac{t}{3.6}\right)\log\left(\frac{1}{2}\right)$$

$$\frac{\log\left(\frac{100}{500}\right)}{\log\left(\frac{1}{2}\right)} = \frac{t}{3.6}$$

$$2.321... = \frac{t}{3.6}$$

8.36 = t

It will take about 8.4 days for the sample of radon-224 to decay to 100g.

• If your have any difficulty with these solutions, please contact your teacher before continuing.

Page 453, Your Turn (bottom of page)

$$5^{x-2} - 7^{x+1} = 0$$

$$5^{x-2} = 7^{x+1}$$

$$\log 5^{(x-2)} = \log 7^{(x+1)}$$

$$(x-2)\log 5 = (x+1)\log 7$$

$$x\log 5 - 2\log 5 = x\log 7 + \log 7$$

$$x\log 5 - x\log 7 = \log 7 + 2\log 5$$

$$x(\log 5 - \log 7) = \log 7 + 2\log 5$$

$$x = \frac{\log 7 + 2\log 5}{\log 5 - \log 7}$$

$$x = -15.349...$$

To three decimal places, x = -15.350.

Page 454, Your Turn

$$\log_{5} 450$$

$$= \frac{\log 450}{\log 5}$$

$$= 3.7958...$$

The value of $\log_5 450$, to three decimal places, is 3.796.

