

If you have any difficulty with these solutions, please contact your teacher before continuing.

Page 516 – 517, Investigate the Math, Questions A - H

A.

- B. i) All the graphs have different amplitudes. The original graph has an amplitude of 1. Graphs i), ii), and iii) have amplitudes of 3, 5, and $\frac{1}{2}$ respectively. Thus, the value of a indicates the amplitude of the graph. The greater value of a, the greater the amplitude is. For instance, $y = 3 \sin x$ has a greater amplitude than $y = \sin x$, and $y = 0.5 \sin x$ has a lesser amplitude than $y = \sin x$.
 - ii) The amplitude indicates the radius of the water wheel; therefore, *a* represents the radius.

If you have any difficulty with these solutions, please contact your teacher before continuing.

C.

- D. i) All graphs have different periods. The original graph has a period of 2π , or about 6.28, and it includes two complete cycles. Graphs i), ii), and iii) have periods of about 3.14, 2.09, and 2(6.28) = 12.56, respectively. Four cycles, six cycles, and one cycle, respectively, are shown. The greater the value of b, the smaller the period is. The period of any sinusoidal equation is $\frac{2\pi}{b}$. For instance, $y = \sin 2x$ has a lesser period than $y = \sin x$, and $y = \sin x$, and $y = \sin 0.5x$ has a greater period than $y = \sin x$.
 - ii) The value of b indicates how fast the water wheel is turning. The greater the value of b, the faster the wheel turns. I know this because when b = 2, the wheel completes four turns in 4π radians; therefore, it is turning faster.

• If you have any difficulty with these solutions, please contact your teacher before continuing.

E.

- F. i) The graph of $y = \sin x$ has an x-intercept at the origin, and the graph is increasing. Graph i) is the graph of $y = \sin x$ translated 1.6 units to the right, graph ii) is the graph of $y = \sin x$ translated 3.1 units to the right, and graph iii) is the graph of $y = \sin x$ translated 0.8 units to the left or (6.3 0.8) = 5.5 units to the right. The value of c causes the graph to shift horizontally. If the value of c is subtracted from c, the graph is translated to the right. If it is added to c, the graph is translated to the left.
 - iii) This value gives no information about the water wheel. It indicates only that the measurements began at different positions of the water wheel.

• If you have any difficulty with these solutions, please contact your teacher before continuing.

G.

- H. i) The value of d affects the midline axis of the graph. The equation of the axis is y = d.
 - ii) The water level is at y = d on the water wheel, so the value of d tells me now high the water is on the wheel.

Page 517, Reflecting, Questions I-L

I.

- The amplitude is a.
- The period is $\frac{2\pi}{h}$ or $\frac{360^{\circ}}{h}$.
- The equation of the midline is y = d.
- J. The value of c indicates that the graph has been translated horizontally by c units.
- K. Yes. The measurement system is different, but the function itself does not change.
- L. Yes. A cosine function is a sine function that has been translated left by 90° or $\frac{\pi}{2}$. It has the same characteristics as a sine function, so the parameters should indicate the same characteristics of the graph.