Lesson 2 Practice Questions

Basic Problem Solving Practice

1. Jason and Sam are flying a kite. The kite is 10 m above Jason's feet. Sam is on the ground, 8 m away from Jason, holding the kite's string. How long is the kite's string?

Step 1: Identify the given and the required values.

- The distance from Jason to the kite is 10 m.
- *The distance from Jason to Sam is 8 m.*
- The length of the hypotenuse, the distance from Sam to the kite, is unknown.

Step 2: Draw and label the diagram.

Steps 3 and 4: Write the formula, substitute known values, and solve.

$$a^{2} + b^{2} = s^{2}$$

$$10^{2} + 8^{2} = s^{2}$$

$$100 + 64 = s^{2}$$

$$164 = s^{2}$$

$$12.8 = s$$

The length of the string is approximately 12.8 m.

Step 5: Review the answer.

The string is the hypotenuse, which is the longest side of the triangle. As such, the answer is reasonable.

Basic Problem Solving Practice #2

2. A TV screen is advertised by its diagonal measurement. The width of the screen on a 48 inch TV is 41 inches. What is the height of the screen, to the nearest inch?

Step 1: Identify the given and the required values.

- The width of the screen is 41 inches.
- The diagonal measurement of the screen is 48 inches.
- The height of the screen is the unknown.

Step 2: Draw and label the diagram.

Steps 3 and 4: Write the formula, substitute known values, and solve.

$$a^{2} + b^{2} = c^{2}$$

$$4I^{2} + b^{2} = 48^{2}$$

$$168I + b^{2} = 2304$$

$$b^{2} = 2304 - 168I$$

$$b^{2} = 623$$

$$b = 24.96$$

The height of the TV's screen is approximately 25 inches.

Step 5: Review the answer.

The height of the TV is shorter than the hypotenuse. As such, the answer is reasonable.