
Solving Problems Involving the Tangent Using a Ratio Table

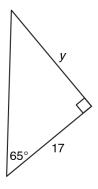
1. Determine the measure of angle w.

Step 1: Identify and label the sides as being adjacent to, opposite, or the hypotenuse, in relation to the angle indicated.

Step 2: State the appropriate ratio.

tan gent of angle
$$\theta = \frac{length\ opposite\ \theta}{length\ adjacent\ to\ \theta}$$

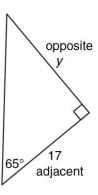
Step 3: Substitute known values, and calculate the unknown value.


$$tan w = \frac{opp}{adj}$$

$$tan w = \frac{1.8}{10}$$

$$tan w = 0.18$$

Looking at the table, it can see that $\tan 10^{\circ} = 0.18$, so $w = 10^{\circ}$.


2. Determine the value of y, to the nearest tenth.

Step 1: Identify and label the sides as being adjacent to, opposite, or the hypotenuse, in relation to the angle indicated.

Step 2: State the appropriate ratio.

tan gent of angle
$$\theta = \frac{length \ opposite \ \theta}{length \ adjacent \ to \ \theta}$$

Step 3: Substitute known values, and calculate the unknown value.

$$tan \theta = \frac{opp}{adj}$$

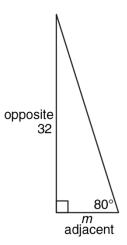
$$tan 65^{\circ} = \frac{y}{17}$$

$$2.14 = \frac{y}{17}$$

$$2.14 \times 17 = \frac{y}{\cancel{y}} \times \cancel{y}$$

$$36.4 = y$$

The value of y is approximately 36.4.


3. Use the tangent ratio table to determine the unknown side length, to the nearest tenth.

32

Step 1: Identify and label the sides as being adjacent to, opposite, or the hypotenuse, in relation to the angle indicated.

Step 2: State the appropriate ratio.

tan gent of angle $\theta = \frac{length\ opposite\ \theta}{length\ adjacent\ to\ \theta}$

Step 3: Substitute known values, and calculate the unknown value.

$$tan \theta = \frac{opp}{adj}$$

$$tan 80^{\circ} = \frac{32}{m}$$

$$5.67 = \frac{32}{m}$$

$$5.67 \times m = \frac{32}{m} \times m$$

$$5.67 m = 32$$

$$\frac{5.67}{5.67} = \frac{32}{5.67}$$

$$m = 5.6$$

The value of m is approximately 5.6.