Solving for Unknown Side Lengths Using Sine and Cosine

1. Determine the length of side y, to the nearest tenth.

Step 1: Identify and label the sides as being adjacent to, opposite, or the hypotenuse, in relation to the angle indicated.

Step 2: State the appropriate ratio.

sine of angle
$$\theta = \frac{length \ opposite \ \theta}{hypotenuse}$$

Step 3: Substitute known values, and calculate the unknown value.

$$\sin \theta = \frac{opp}{hyp}$$

$$\sin 15^\circ = \frac{y}{16}$$

$$16 \times \sin 15^\circ = \frac{y}{\cancel{16}} \times \cancel{16}$$

$$4.1 = y$$

The length of side y is approximately 4.1.

2. Determine the length of side n, to the nearest tenth of a foot.

Step 1: Identify and label the sides as being adjacent to, opposite, or the hypotenuse, in relation to the angle indicated.

Step 2: State the appropriate ratio.

cosine of angle
$$\theta = \frac{length\ adjacent\ to\ \theta}{hypotenuse}$$

Step 3: Substitute known values, and calculate the unknown value.

$$\cos \theta = \frac{adj}{hyp}$$

$$\cos 27^{\circ} = \frac{n}{32 \text{ ft}}$$

$$32 \text{ ft} \times \cos 27^{\circ} = \frac{n}{32 \text{ ft}} \times 32 \text{ ft}$$

$$28.5 \text{ ft} = n$$

The length of side n is approximately 28.5 feet.

3. Determine the length of side m, to the nearest tenth of a centimetre.

Step 1: Identify and label the sides as being adjacent to, opposite, or the hypotenuse, in relation to the angle indicated.

Step 2: State the appropriate ratio.

cosine of angle
$$\theta = \frac{length \ adjacent \ to \ \theta}{hypotenuse}$$

Step 3: Substitute known values, and calculate the unknown value.

$$\cos \theta = \frac{adj}{hyp}$$

$$\cos 42^{\circ} = \frac{17 \text{ cm}}{m}$$

$$m \times \cos 42^{\circ} = \frac{17 \text{ cm}}{yh} \times yh$$

$$m \times \cos 42^{\circ} = 17 \text{ cm}$$

$$\frac{m \times \cos 42^{\circ}}{\cos 42^{\circ}} = \frac{17 \text{ cm}}{\cos 42^{\circ}}$$

$$m = 22.9 \text{ cm}$$

The length of side m is approximately 22.9 cm.

4. Determine the length of side w, to the nearest tenth of an inch.

Step 1: Identify and label the sides as being adjacent to, opposite, or the hypotenuse, in relation to the angle indicated.

Step 2: State the appropriate ratio.

$$sine \ of \ angle \ \theta = \frac{length \ opposite \ \theta}{hypotenuse}$$

Step 3: Substitute known values, and calculate the unknown value.

$$\sin \theta = \frac{opp}{hyp}$$

$$\sin 35^{\circ} = \frac{21 \text{ in}}{w}$$

$$w \times \sin 35^{\circ} = \frac{21 \text{ in}}{w} \times w$$

$$w \times \sin 35^{\circ} = 21 \text{ in}$$

$$\frac{w \times \sin 35^{\circ}}{\sin 35^{\circ}} = \frac{21 \text{ in}}{\sin 35^{\circ}}$$

$$w = 36.6 \text{ in}$$

The length of side w is approximately 36.6 inches.