Lesson 8 Practice Questions Lesson 2

Drawing Similar Polygons

1. Draw a triangle, similar to the one shown, that is smaller by a factor of 2.

Solution:

Step 1: Label the vertices.

Step 2: Measure each angle and side length. Record your findings.

Angle	Original Side Length
∠ <i>J</i> = 80°	JK = 5.5 cm
∠ <i>K</i> = 45°	KL = 6.5 cm
∠L = 55°	JL = 5 cm

Step 3: Divide each of the side lengths by the given scale factor of 2.

Angle	Original Side Length	New Side Length in Reduction
∠ <i>J</i> = 80°	JK = 5.5 cm	$JK' = 2.75 \ cm$
∠ <i>K</i> = 45°	KL = 6.5 cm	KL' = 3.25 cm
∠ <i>L</i> = 55°	JL = 5 cm	JL' = 2.5 cm

Step 4: Draw one of the sides with its new measure.

This example starts with side JK.

Step 5: Measure the angle at one end of the new side, and make a small mark.

Angle J' is 80° .

Step 6: Draw the next side, going through the small angle mark. This side length should correspond to the calculated length in step 3.

Step 7: Repeat Steps 5 and 6 until all sides are drawn.

Step 8: Measure the last side and measure the angle between the first and last sides.

The last side measure 3.25 cm. Angle K' measures 45°.

2. Draw a parallelogram, similar to the one shown, that is larger by a factor of 1.5.

Solution:

Step 1: Label the vertices.

Step 2: Measure each angle and side length. Record your findings. Step 3: Multiply each of the side lengths by the given scale factor of 1.5.

· J.	Munipiy cach c	y the stat tengins by	ine given scare jacior	<i>oj</i> 1.5.
	Angle	Original Side Length	New Side Length in	

Angle	Original Side Length	New Side Length in Enlargement
∠ <i>W</i> = 45°	WX = 4.4 cm	WX' = 6.6 cm
∠X = 135°	XY = 6.6 cm	$XY' = 9.9 \ cm$
∠ <i>Y</i> = 45°	YZ = 4.4 cm	YZ' = 6.6 cm
∠Z = 135°	ZW = 6.6 cm	$ZW' = 9.9 \ cm$

Step 4: Draw one of the sides with its new measure.

Step 5: Measure the angle at one end of the new side, and make a small mark.

Step 6: Draw the next side, going through the small angle mark. This side length should correspond to the calculated length in step 3.

Step 7: Repeat Steps 5 and 6 until all sides are drawn.

Step 8: Measure the last side and measure the angle between the first and last sides.

3. Draw a figure, similar to the one shown, that is an enlargement by a factor of 1.5.

Step 1: Label the vertices.

Step 2: Measure each angle and side length. Record your findings.

Step 3: Multiply each of the side lengths by the given scale factor of 1.5.

Angle	Original Side Length	New Side Length in Enlargement
∠A = 40°	AB = 7.2 cm	$AB' = 10.8 \ cm$
∠B = 40°	BC = 5.5 cm	$BC' = 8.25 \ cm$
∠C = 55°	CD = 4.4 cm	CD' = 6.6 cm
∠D = 125°	DE = 7.7 cm	DE' = 11.55 cm
∠E = 55°	EF = 4.4 cm	EF' = 6.6 cm
∠F = 57°	FG = 2.2 cm	FG' = 3.3 cm
∠G = 68°	GH = 5 cm	GH' = 7.5 cm
∠ <i>H</i> = 68°	HA = 7.8 cm	HA' = 11.7 cm

Step 4: Draw one of the sides with its new measure.

Step 5: Measure the angle at one end of the new side, and make a small mark.

Step 6: Draw the next side, going through the small angle mark. This side length should correspond to the calculated length in Step 3.

Step 7: Repeat Steps 5 and 6 until all sides are drawn.

Step 8: Measure the last side and measure the angle between the first and last sides.

