Appendix 2: Solutions

Lesson 1.1: Arithmetic Sequences

Practice Solutions - I

- 1. Identify the arithmetic sequence(s) below. For the arithmetic sequence(s), indicate the value of t_1 , d, and the simplified general term, t_n . For any sequence that is not arithmetic, explain why not.
 - a. a, a + w, a + 2w, a + 3w, ...

Arithmetic sequence

d = w for each pair of consecutive terms

$$t_1 = a$$

$$t_n = a + (n-1)w$$

b. 78, 75, 71, 66, 61, ...

Not arithmetic

$$75 - 78 = -3$$

$$71 - 75 = -4$$

The differences between pairs of consecutive terms are not constant; therefore, the sequence is not arithmetic.

2. Given $t_1 = 652$ and d = -3, list the first four terms in the arithmetic sequence.

$$t_1 = 652$$

$$t_2 = 652 - 3 = 649$$

$$t_3 = 649 - 3 = 646$$

$$t_4 = 646 - 3 = 643$$

3. Determine the number of terms, n, in the arithmetic sequence 91, 67, 43, ..., -245.

$$t_1 = 91$$

$$t_n = t_1 + (n-1)d$$

$$t_n = -245$$

$$-245 = 91 + (n-1)(-24)$$

$$d = 67 - 91 = -24$$

$$-336 = -24n + 24$$

$$n = ?$$

$$-360 = -24n$$

$$15 = n$$

4. Does an arithmetic sequence with $t_1 = 24$ and d = 13 contain the term 57?

$$t_n = t_1 + (n-1)d$$

$$57 = 24 + (n-1)(13)$$

$$33 = 13n - 13$$

$$46 = 13n$$

$$3.538... = n$$

Because *n* is not a natural number, 57 is not a term of this sequence.

5. The first three terms of an arithmetic sequence are 5y + 3, 7y - 6, and 6y. Determine the numerical values of the first three terms in the sequence, and then determine the value of d.

Recall that *d* is constant. To find *d*, subtract the first term from the second term of each pair of consecutive terms.

$$d = d$$

$$t_2 - t_1 = t_3 - t_2$$

$$(7y - 6) - (5y + 3) = 6y - (7y - 6)$$

$$2y - 9 = -y + 6$$

$$3y = 15$$

$$y = 5$$

The first three terms are 5(5) + 3 = 28

$$7(5) - 6 = 29$$

$$6(5) = 30$$

The value of *d* is 29 - 28 = 1.

Please return to *Unit 1: Sequences and Series Lesson 1.1* to continue your exploration.