Lesson 2.1: Quadratic Functions Expressed in Vertex Form

∷

Explore Your Understanding Assignment

This assignment includes multiple choice and short answer questions. For multiple choice questions, select the best answer. Each is worth 1 mark. Marks assigned to short answer questions are indicated for each question. Be sure to show all necessary work.

Use the following graph of a quadratic function to answer questions 1 and 2.

1. The values of p and q are

A.
$$p = 4; q = 3$$

B.
$$p = 4; q = -3$$

C.
$$p = -4; q = 3$$

D.
$$p = -4; q = -3$$

1

2. Which statement best describes the range of the function?

A.
$$\{y \mid y \le 3, y \in R\}$$
 because $a > 0$

B.
$$\{y \mid y \le 3, y \in R\}$$
 because $a < 0$

C.
$$\{y \mid y \ge 3, y \in R\}$$
 because $a > 0$

D.
$$\{y \mid y \ge 3, y \in \mathbb{R}\}$$
 because $a < 0$

Use the following quadratic function to answer questions 3 to 6.

$$f(x) = \frac{2}{3}(x-4)^2 + 2$$

- 1____
- 3. Choose the correct statement with regards to *x*-intercepts.
 - A. The graph of the function has zero x-intercepts because a and q are both positive.
 - B. The graph of the function has zero *x*-intercepts because *a* and *p* are both positive.
 - C. The graph of the function has two x-intercepts because a and q are both positive.
 - D. The graph of the function has two x-intercepts because a and p are both positive.
- 1____
- 4. The vertex of the function has coordinates of
 - A. (-4, -2)
 - B. (-4, 2)
 - C. (4, -2)
 - D. (4, 2)
- 1 ____
- 5. The axis of symmetry is the line
 - A. x = -4
 - B. x = 4
 - C. y = -2
 - D. v = 2
- 1____
- 6. Which statement correctly provides the direction of opening and the maximum/ minimum value of the function?
 - A. The graph of f(x) opens downward and has a maximum value of 2
 - B. The graph of f(x) opens downward and has a minimum value of 2
 - C. The graph of f(x) opens upward and has a minimum value of 2
 - D. The graph of f(x) opens upward and has a maximum value of 2

Use the following graph of a quadratic function to answer question 7.

1 _____ 7. Write the equation of the quadratic function in vertex form.

A.
$$f(x) = 1.5(x-3)^2 - 4.5$$

B.
$$f(x) = 1.5(x+3)^2 - 4.5$$

C.
$$f(x) = 0.5(x-3)^2 - 4.5$$

D.
$$f(x) = 0.5(x+3)^2 - 4.5$$

0. Describe the transformations required to change the graph of $f(x) = x^2$ into the graph of $g(x) = -2(x+3)^2 + 1$.

- A. Stretch the graph of the function by a factor of –2, and then translate the graph 3 units to the left and 1 unit up.
- B. Stretch the graph of the function by a factor of –2, and then translate the graph 3 units to the right and 1 unit up.
- C. Translate the graph of the function 3 units to the left and 1 unit up, and then stretch the graph by a factor of -2.
- D. Translate the graph of the function 3 units to the right and 1 unit up, and then stretch the graph by a factor of -2.

3 9. Sketch the graph of $f(x) = 1.5(x-1)^2 - 6$. Be sure to label the axes and at least 5 points, including the vertex, *x*-intercept(s), and *y*-intercept(s), if applicable.

- 10. Adrianne is playing soccer, and kicks the ball at the goal. The ball follows the path of a quadratic function. When she kicks the ball, she is 20 feet away from the goal, and the ball hits a maximum height of 10 feet when it is 5 feet away from the goal line. If the net is 8 feet tall, does she make a goal (assuming the goalie does not stop the ball)?
- a. Draw a diagram of the situation, including known values.

b. Determine the quadratic function that models the situation.

(1) c. Given the information, determine whether Adrianne makes a goal.

(2)

You have completed *Lesson 2.1 Explore Your Understanding Assignment*. Please return to the *Module* and continue your exploration with *Lesson 2.2*.

20 ADLC Mathematics 20-1