Unit 2: Quadratic Functions and Equations Final Review Assignment

≣

Final Review Assignment

This assignment includes multiple choice and short answer questions. For multiple choice questions, select the best answer. Each is worth 1 mark. Marks assigned to short answer questions are indicated for each question. Be sure to show all necessary work.

	_	
1	7	1
(4)
•		_

Match the Description with the correct Quadratic Function.

Description

- _ 1. Quadratic function with a range of $\{y \mid y \ge 2\}$
- 2. Quadratic function with a vertex at (4, -2)
 - 3. Quadratic function with an axis of symmetry about the line x = -6
- 4. Quadratic function with one *x*-intercept

Quadratic Function

- A. $y = -(x-4)^2 2$
- B. $y = -(x+4)^2 + 2$
- C. $y = 2(x+1)^2 + 2$
- D. $y = (x+6)^2 5$
- E. $v = 5(x 6)^2$
- F. $y = -2(x-5)^2 + 6$

Match the Description with the correct Quadratic Function.

Description

- _____ 5. Quadratic function with zeros of 3 and -2
- _____ 6. Quadratic function whose graph has a *y*-intercept of 6
- 7. Quadratic function whose graph has one *x*-intercept
- _____ 8. Quadratic function whose graph opens downward

Quadratic Function

- A. $y = x^2 + x 6$
- B. $y = x^2 x 6$
- C. $y = x^2 x + 6$
- D. $y = x^2 + 6x + 9$
- E. $y = x^2 6x 9$
- $F. \quad y = -x^2 + 6x + 9$

2 9. Convert the quadratic function $y = -2x^2 - 16x - 37$ to vertex form by completing the square.

3 10. The safe stopping distance, d, in metres, of a Harold Dobson motorcycle on wet pavement is given by the function, $d(s) = 0.02(3s^2 + 20s)$, where s is the speed of the motorcycle in metres per second. Find the speed at which the safe stopping distance is 50 metres.

11. An object falls with an acceleration of $a = -9.81 \text{ m/s}^2$. A function relating the height from which the object falls, the initial velocity of the object, and the time the object spends in the air is frequently used in physics.

$$h(t) = V_0 t + a t^2$$

$$V_0$$
 = initial velocity

$$t = time$$

$$a =$$
 acceleration due to gravity

Lucy and Kim determine the height of a building by dropping a brick from its roof. The initial velocity is 0 m/s because Lucy simply lets go of the brick. Kim times the fall of the brick to be 3.5 seconds.

a. What is the height of the building?

3

b. Determine the amount of time the brick is in the air if Lucy throws the brick downward with an initial velocity of -5 m/s. Round to the nearest hundredth of a second.

/17

ADLC Mathematics 20-1 31