

Appendix 2: Solutions

Lesson 6.1: Absolute Value and Absolute Value Functions

Practice Solutions - I

1. Explain how |a| can be used to represent the distance from a to zero on a number line.

If a is positive, it is a units above zero. If a in negative it is a units below zero. In both cases, the absolute value can be used to indicate the magnitude of the difference. So in both cases, the distance between a and zero is |a|.

- 2. Evaluate each of the following
 - a. 17

17

b.
$$3|22-54|+12$$

 $3|22-54|+12=3|-32|+12$
 $=3(32)+12$
 $=108$

c.
$$4|1-7|-3|8-6|$$

 $4|1-7|-3|8-6|=4|-6|-3|2|$
 $=4(6)-3(2)$
 $=18$

d.
$$|-6+12|+|3-(-7)|-|8-15^2|+|-6|$$

 $|-6+12|+|3-(-7)|-|8-15^2|+|-6|=|6|+|10|-|-217|+|-6|$
 $=6+10-217+6$
 $=-195$

ADLC Mathematics 20-1

3. The inequality |a-b| < c < a+b is called the triangle inequality, where a, b, and c are the side lengths of a triangle. Explain the restrictions on a triangle represented by the triangle inequality.

The inequality $|a-b| \le c$ means that the difference between two sides of the triangle cannot be greater than the length of the third side. The inequality $c \le a+b$ means the sum of two sides cannot be greater than the length of the third side.

Practice Solutions – II

1. Complete the following table of values.

x	f(x)	f(x)
-5	20.5	20.5
-4	14	14
-3	8.5	8.5
-2	4	4
-1	0.5	0.5
0	-2	2
1	-3.5	3.5
2	-4	4
3	-3.5	3.5
4	-2	2
5	0.5	0.5

76 ADLC Mathematics 20-1