3. The inequality |a-b| < c < a+b is called the triangle inequality, where a, b, and c are the side lengths of a triangle. Explain the restrictions on a triangle represented by the triangle inequality.

The inequality $|a-b| \le c$ means that the difference between two sides of the triangle cannot be greater than the length of the third side. The inequality $c \le a+b$ means the sum of two sides cannot be greater than the length of the third side.

Practice Solutions – II

1. Complete the following table of values.

x	f(x)	f(x)
-5	20.5	20.5
-4	14	14
-3	8.5	8.5
-2	4	4
-1	0.5	0.5
0	-2	2
1	-3.5	3.5
2	-4	4
3	-3.5	3.5
4	-2	2
5	0.5	0.5

76 ADLC Mathematics 20-1

- 2. Consider the equation of the function $y = |x^2 4|$.
 - a. Determine any x-intercepts and y-intercepts on the graph of the function.

The x-intercepts of $y = |x^2 - 4|$ are the same as the x-intercepts of $y = x^2 - 4$.

$$y = x^2 - 4$$

$$0=x^2-4$$

$$4 = x^2$$

$$\pm 2 = x$$

The *x*-intercepts are -2 and 2.

$$y = |x^2 - 4|$$

$$y = |0^2 - 4|$$

$$y = |-4|$$

$$y = 4$$

The *y*-intercept is 4.

b. Graph the function.

c. State the domain and range of the function.

Domain: $\{x \mid x \in R\}$

Range: $\{y \mid y \ge 0, y \in R\}$

d. Express the function using piecewise notation.

The function is defined by $y = x^2 - 4$ when $x^2 - 4$ is positive, and by $y = -(x^2 - 4)$ when $x^2 - 4$ is negative, so:

$$y = \begin{cases} x^2 - 4 \text{ for } x \le -2 \text{ or } x \ge 2\\ 4 - x^2 \text{ for } -2 < x < 2 \end{cases}$$

3. Describe a process that can be used to write any absolute value function as a piecewise function.

Let y = |f(x)|.

Determine any *x*-intercepts. These will split the function into intervals, where |f(x)| = f(x) or |f(x)| = -f(x).

Determine whether |f(x)| = f(x) or |f(x)| = -f(x) is true for each interval.

Summarize the information in piecewise form. In general,

$$y = \begin{cases} f(x) \text{ for values of } x \text{ such that } f(x) \ge 0 \\ -f(x) \text{ for values of } x \text{ such that } f(x) < 0 \end{cases}$$

Please complete Lesson 6.1: Explore Your Understanding Assignment located in Workbook 6A before proceeding to Lesson 6.2.